1,739
Views
7
CrossRef citations to date
0
Altmetric
Articles; Agriculture and Environmental Biotechnology

Geneticin (G418) resistance and electroporation-mediated transformation of Fusarium graminearum and F. culmorum

&
Pages 268-273 | Received 23 Jul 2014, Accepted 05 Sep 2014, Published online: 23 Jan 2015

References

  • Bernardo A, Bai G, Guo P, Xiao K, Guenzi AC, Ayoubi P. Fusarium graminearum -- induced changes in gene expression between Fusarium head blight-resistant and susceptible wheat cultivar. Functional Integr Genomic. 2007;7:69–77.
  • Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M. Molecular and genetic studies of Fusarium trichothecen pathways gene and evolution. Biosci Biotech Biochemistry. 2007;71:2105–2123.
  • Bai G, Shaner G. Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol. 2004;42:135–161.
  • Bello GMD, Monaco CI, Simon MR. Biological control of seedling blight of wheat caused by Fusarium graminearum with beneficial rhizosphere microorganisms. World J Microb Biotechnol. 2002;18(7):627–636.
  • Altinok HH, Dikilitas M, Yildiz HN. Potential of Pseudomonas and Bacillus isolates as biocontrol agents Fusarium Wilt of Eggplant. Biotechnol Biotechnological Equipment. 2013;27(4):3952–3958.
  • McDonald T, Brown D, Keller NP, Hammond TM. RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant Microbe Interactions. 2005;18(6):539–545.
  • Scherm B, Orru M, Balmas V, Spanu F, Azara E, Delogu G, Hammond TM, Keller NP, Migheli Q. Altered trichothecene biosynthesis in TRI6-silenced transformants of Fusarium culmorum influences the severity of crown and foot rot on durum wheat seedlings. Mol Plant Pathol. 2011;12(8):759–771.
  • Day S, Lalitha P, Haug S, Fothergill AW, Cevallos V, Vijayakumar R, Prajna NV, Acharya NR, McLeod SD, Lietman TM. Activity of antibiotics against Fusarium and Aspergillus. Br J Ophthalmology. 2009;93(1):116–119.
  • Franke CA, Rice CM, Strauss JH, Hruby DE. Neomycin resistance as a dominant selectable marker for selection and isolation of vaccinia virus recombinants. Mol Cell Biol. 1985;5(8):1918–1924.
  • Zhou H, Chen YQ, Du YP, Qu LH. The Schizosaccharomyces pombe mgU6-47 gene is required for 2΄-O-methylation of U6 snRNA at A41. Nucleic Acids Res. 2002;30(4):894–902.
  • Brown DW, Dyer RB, McCormick SP, Kendra DF, Plattner RD. Functional demarcation of the Fusarium core trichothecene gene cluster. Fungal Genet Biol. 2004;41:454–462.
  • Frandsen RJ, Nielsen NJ, Maolanon N, Sørensen JC, Olsson S, Nielsen J, Giese H. The biosynthetic pathway for aurofusarin in Fusarium graminearum reveals a close link between the naphthoquinones and naphthopyrones. Mol Microbiol. 2006;61:1069–1080.
  • Smalley EB, Lin B. Research on fungal growth stimulants for domestic animals in China. Biotechnol Biotechnological Equipment. 1990;4–5(6):48–54.
  • Wang HL, Kim SH, Siu H, Breuil C. Transformation of sapstaining fungi with hygromycin B resistance plasmids pAN7-1 and pCB1004. Mycological Res. 1999;103(1):77–80.
  • Nakayashiki H, Hanada S, Quoc NB, Kadotani N, Tosa Y, Mayama S. RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol. 2005;42:275–283.
  • Richey MG, Marek ET, Schardl CL, Smith DA. Transformation of filamentous fungi with plasmid DNA by electroporation. Phytopathol. 1989;79:844–847.
  • Waitz JA, Sabatelli F, Menzel F, Moss JEL. Biological activity of antibiotic G-418, a new Micromonospora-produced aminoglycoside with activity against protozoa and helminthes. Antimicrob Agents Chemother. 1974;6(5):579–581.
  • Wiebe MG, Novakova M, Miller L, Blakebrough ML, Robson GD, Punt PJ, Trinci APJ. Protoplast production and transformation of morphological mutants of the Quorn2 myco-protein fungus, Fusarium graminearum A3/5, using the hygromycin B resistance plasmid pAN7-1. Mycological Res. 1997;101(7):871–877.
  • Durand N, Reymond P, Ftvre M. Transformation of Penicillium roqueforti to phleomycinand to hygromycin B-resistance. Curr Genet. 1991;19:149–153.
  • Diez BR. Strategies for the transformation of filamentous fungi. J Appl Microbiol. 2002;92:189–195.
  • Kadotani N, Nakayashiki H, Tosa Y, Mayama S. RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. MPMI. 2003;16 (9):769–776.
  • Depicker A, Herman L, Jacobs A, Schell J, Montagu VM. Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium/plant cell interaction. Mol Genet Genomics. 1985;201:477–484.
  • Wernars K, Goosen T, Wennekes BM, Swart K, van den Hondel CA, can den Broek HW. Cotransformation of Aspergillus nidulans: a tool for replacing fungal genes. Mol Genet Genomics. 1987;209:71–77.
  • Kohli A, Twyman RM, Abranches R, Wegel E, Shaw P, Christou P, Stoger E. Transgene integration, organization and interaction in plants. Plant Mol Biol. 2003;52:247–258.
  • Sakaguchi T, Amari S, Nagashio N, Murakami Y, Yokoyama K, Tamiya E. Genetic transformation of Trichosporon cutaneum with a plasmid, pAN 7–1, from filamentous fungi. Biotechnol Lett. 1998;20(9):851–855.
  • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CAMJJ. Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene. 1987;56:117–123.
  • Nakayashiki H, Kiyotomi K, Tosa Y, Mayama S. Transposition of the retrotransposon MAGGY in heterologous species of filamentous fungi. Genetics. 1999;15:693–703.