1,563
Views
28
CrossRef citations to date
0
Altmetric
Articles; Pharmaceutical Biotechnology

The positive effects of Mn2+ on nitrogen use and surfactin production by Bacillus subtilis ATCC 21332

, , , &
Pages 381-389 | Received 09 Jul 2014, Accepted 16 Oct 2014, Published online: 12 Feb 2015

References

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P. Biosurfactants: properties, commercial production and application. Curr Sci India. 2008;94(6):736–747.
  • Banat IM. Characterization of biosurfactants and their use in pollution removal – state of the art. Acta Biotechnol. 1995;15(3):251–267.
  • Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ. Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods. 2004;56(3):339–347.
  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol. 2010;87(2):427–444.
  • Lawniczak L, Marecik R, Chrzanowski L. Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol. 2013;97(6):2327–2339.
  • Mukherjee AK, Das K. Microbial surfactants and their potential applications: an overview. In: Sen R, editor. Biosurfactants. Vol. 672, Advances in experimental medicine and biology. New York, NY: Springer; 2010, p. 54–64.
  • Mulligan CN, Mudhoo A, Sharma SK, editors. Biosurfactants: research trends and applications. Boca Raton, FL: CRC Press Inc.; 2014.
  • Christova N, Lang S, Wray V, Kaloyanov K, Konstantinov S, Stoineva I. Production, structural elucidation and in vitro antitumor activity of trehalose lipid biosurfactant from Nocardia farcinica strain. J Microbiol Biotechn [Internet]. 2014, Available from: http://www.jmb.or.kr/journal/paper_list.html?key=title&keyword=Production%2C+structural+elucidation+and+in+vitro+antitumor+activity+of+trehalose+lipid+biosurfactant+from+Nocardia+farcinica+strain
  • Shaligram NS, Singhal RS. Surfactin – a review on biosynthesis, fermentation, purification and applications. Food Technol Biotechnol. 2010;48:119–134.
  • Liu JF, Yang J, Yang SZ, Ye RQ, Mu BZ. Effects of different amino acids in culture media on surfactin variants produced by Bacillus subtilis TD7. Appl Biochem Biotechnol. 2012;166:2091–2100.
  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NAH. Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol. 2008;150:289–303.
  • Arima K, Kakinuma A, Tamura G. Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun. 1968;31(3):488–494.
  • Mulligan CN, Chow TYK, Gibbs BF. Enhanced biosurfactant production by a mutant Bacillus subtilis strain. Appl Microbiol Biotechnol. 1989;31:486–489.
  • Khan MS, Zaidi A, Goel R, Musarrat J, editors. Biomanagement of metal-contaminated soils. Vol. 20, Environmental pollution. Dordrecht: Springer; 2011.
  • Campos JM, Stamford TLM, Sarubbo LA, de Luna JM, Rufino RD, Banat IM. Microbial biosurfactants as additives for food industries. Biotechnol Prog. 2013;29:1097–1108.
  • Deleu M, Paquot M. From renewable vegetables resources to microorganisms: new trends in surfactants. Comptes Rendus Chimie. 2004;7:641–646.
  • Sousa M, Melo VMM, Rodrigues S, Sant'ana HB, Goncalves LRB. Screening of biosurfactant-producing Bacillus strains using glycerol from the biodiesel synthesis as main carbon source. Bioprocess Biosyst Eng. 2012;35:897–906.
  • Yanez-Mendizabal V, Vinas I, Usall J, Torres R, Solsona C, Teixido N. Production of the postharvest biocontrol agent Bacillus subtilis CPA-8 using low cost commercial products and by-products. Biol Control. 2012;60:280–289.
  • de Sousa M, Dantas IT, Felix AKN, de Sant'Ana HB, Melo VMM, Goncalves LRB. Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633. Braz Arch Biol Technol. 2014;57:295–301.
  • Pereira JFB, Gudina EJ, Costa R, Vitorino R, Teixeira JA, Coutinho JAP, Rodrigues LR. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel. 2013;111:259–268.
  • Vagvolgyi C, Sajben-Nagy E, Boka B, Voros M, Berki A, Palagyi A, Krisch J, Skrbic B, Durisic-Mladenovic N, Manczinger L. Isolation and characterization of antagonistic Bacillus strains capable to degrade ethylenethiourea. Curr Microbiol. 2013;66:243–250.
  • Kim J. Isolation and characterization of a biosurfactant-producing bacterium Bacillus pumilus IJ-1 from contaminated crude oil collected in Taean, Korea. J Korean Soc Appl Biol Chem. 2014;57:5–14.
  • Zhao PC, Quan CS, Jin LM, Wang LN, Wang JH, Fan SD. Effects of critical medium components on the production of antifungal lipopeptides from Bacillus amyloliquefaciens Q-426 exhibiting excellent biosurfactant properties. World J Microbiol Biotechnol. 2013;29:401–409.
  • Wei Y, Lai C, Chang J. Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochem. 2007;42:40–45.
  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NAH. Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol. 2008;150:305–325.
  • Cooper DG, Macdonald CR, Duff SJ, Kosaric N. Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol. 1981;42:408–412.
  • Wei Y, Chu I. Mn2+ improves surfactin production by Bacillus subtilis. Biotechnol Lett. 2002;24:479–482.
  • Sheppard JD, Cooper DG. The response of Bacillus subtilis atcc 21332 to manganese during continuous-phased growth. Appl Microbiol Biotechnol. 1991;35:72–76.
  • Davis D, Lynch H, Varley J. The production of surfactin in batch culture by Bacillus subtilis atcc 21332 is strongly influenced by the conditions of nitrogen metabolism. Enzym Microb Technol. 1999;25:322–329.
  • Pettit RK. Small-molecule elicitation of microbial secondary metabolites. Microb Biotechnol. 2011;4:471–478.
  • Slivinski CT, Mallmann E, de Araújo JM, Mitchell DA, Krieger N. Production of surfactin by Bacillus pumilus UFPEDA 448 in solid-state fermentation using a medium based on okara with sugarcane bagasse as a bulking agent. Process Biochem. 2012;47:1848–1855.
  • Karsh KL, Granger J, Kritee K, Sigman DM. Eukaryotic assimilatory nitrate reductase fractionates N and O isotopes with a ratio near unity. Environ Sci Technol. 2012;46:5727–5735.
  • Wacker I, Ludwig H, Reif I, Blencke H-M, Detsch C, Stülke J. The regulatory link between carbon and nitrogen metabolism in Bacillus subtilis: regulation of the gltAB operon by the catabolite control protein CcpA. Microbiology. 2003;149:3001–3009.
  • Fisher SH. Regulation of nitrogen metabolism in Bacillus subtilis: Vive la différence! Mol Microbiol. 1999;32:223–232.
  • Shapiro BM, Stadtman E. Glutamine synthetase (Escherichia coli). Methods Enzymol. 1970;17:910–922.
  • Berges JA, Harrison P. Nitrate reductase activity quantitatively predicts the rate of nitrate incorporation under steady state light limitation: a revised assay and characterization of the enzyme in three species of marine phytoplankton. Limnology Oceanography. 1995;40:82–93.
  • Meers J, Tempest D, Brown C. ‘Glutamine (amide): 2-oxoglutarate amino transferase oxido-reductase (NADP)’, an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol. 1970;64:187–194.
  • Wei Y, Wang L, Chang J. Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnol Prog. 2004;20:979–983.
  • Makkar R, Cameotra S. Effects of various nutritional supplements on biosurfactant production by a strain of Bacillus subtilis at 45°C. J Surfactants Detergents. 2002;5:11–17.
  • Weinberg ED. Roles of trace metals in transcriptional control of microbial secondary metabolism. Biol Metals. 1990;2:191–196.
  • Kim Y, Yoshizawa M, Takenaka S, Murakami S, Aoki K. Isolation and culture conditions of a Klebsiella pneumoniae strain that can utilize ammonium and nitrate ions simultaneously with controlled iron and molybdate ion concentrations. Biosci Biotechnol Biochem. 2002;66:996–1001.
  • Zhou Q, Takenaka S, Murakami S, Seesuriyachan P, Kuntiya A, Aoki K. Screening and characterization of bacteria that can utilize ammonium and nitrate ions simultaneously under controlled cultural conditions. J Biosci Bioeng. 2007;103:185–191.
  • Seki-Chiba S, Ishimoto M. Studies on nitrate reductase of Clostridium perfringens. Purification, some properties, and effect of tungstate on its formation. J Biochem. 1977;82(6):1663–1671.
  • Martinez-Espinosa RM, Esclapez J, Bautista V, Bonete MJ. An octameric prokaryotic glutamine synthetase from the haloarchaeon Haloferax mediterranei. FEMS Microbiol Lett. 2006;264:110–116.
  • Belitsky BR, Wray LV, Fisher SH, Bohannon DE, Sonenshein AL. Role of TnrA in nitrogen source-dependent repression of Bacillus subtilis glutamate synthase gene expression. J Bacteriol. 2000;182:5939–5947.