9,758
Views
268
CrossRef citations to date
0
Altmetric
Review Articles; Agriculture and Environmental Biotechnology

Myconanoparticles: synthesis and their role in phytopathogens management

, , , &
Pages 221-236 | Received 22 Jul 2014, Accepted 27 Oct 2014, Published online: 09 Mar 2015

References

  • Taniguchi N. On the basic concept of ‘nano-technology’. In: Proceedings of the international conference on production engineering Tokyo, Part II; 1974. p. 18–23. Tokyo: Japan Soc Precision Engineering.
  • Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci. 2010;156:1–13.
  • Maynard AD, Michelson, E. The Nanotechnology Consumer Product Inventory [Internet] Washington, DC: Woodrow Wilson International Center for Scholars; c2005. Available from: http://www.nanotechprojectorg/44S.
  • Puebla RA, Dos Santos DS Jr, Aroca RF. Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols. Analyst. 2004;129:1251–1256.
  • Shankar SS, Ahmad A, Pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem. 2003;13:1822–1826.
  • Gericke M, Pinches A. Biological synthesis of metal nanoparticles. Hydrometallurgy. 2006;83:132–140.
  • He SY, Guo ZR, Zhang Y, Zhang S, Wang J, Gu N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater Lett. 2007;61:3984–3987.
  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol. 2007;128:648–653.
  • Moreau, JW, Weber PK, Martin MC, Gilbert B, Hutcheon ID, Banfield JF. Extracellular proteins limit the dispersal of biogenic nanoparticles. Science. 2007;316:1600–1603.
  • Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv. 2009;27:195–226.
  • Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.
  • Rai M, Yadav P, Bridge P, Gade A. MycoNanotechnology (NT), a new and emerging science. In Rai Bridge, editor. Applied mycology. London, UK: CAB International; 2009. p. 258–267.
  • Meyer V. Genetic engineering of filamentous fungi – progress, obstacles and future trends. Biotechnol Adv. 2008;26:177–185.
  • Dhillon GS, Brar SK, Kaur S, Verma M. Green approach for nanoparticle biosynthesis by fungi. Curr Trends Appl. 2012;32:49–73.
  • Sastry RK, Rashmi HB, Rao NH, Ilyas SM. Integrating nanotechnology (NT) into agri-food systems research in India: a conceptual framework. Technol Forecasting Soc Change 2010;77:639–648.
  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW. Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot. 2012;35:64–70.
  • Bhainsa KC, D'Souza SF. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids Surfaces B. 2006;47:160–164.
  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol. 2006;69:485–492.
  • Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles, technological concepts and future applications. J Nanoparticle Res. 2007;7:9275–9280.
  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus Trichoderma asperellum. Nanotechnolology. 2008;19:075103.
  • Gaikwad S, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai MK, Duran D. Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Braz Chem Soc. 2013;24:1974–1982.
  • Dias MA, Lacerda ICA, Pimentel PF, De Castro HF, Rosa CA. Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Lett Appl Microbiol. 2002;34:46–50.
  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloid Surfaces B. 2003;28:313–318.
  • Birla SS, Gaikwad SC, Gade AK, Rai MK. Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Scientific World J. 2013;2013:1–12.
  • Bansal V, Rautaray D, Ahmad A, Sastry M. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem. 2004;14:3303–3305.
  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M. Extracellular biosynthesis of magnetite using fungi. Small. 2006;2:135–141.
  • Riddin TL, Gericke M Whiteley CG. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology. 2006;17:3482–3489.
  • Durán N, Marcato PD, Alves OL, Da Silva JPS, De Souza GIH, Rodrigues, FA, Esposito E. Ecosystem protection by effluent bioremediation, Silver nanoparticles impregnation in a textile fabrics process. J Nanoparticle Res. 2010;12:285–292.
  • Khosravi A, Shojaosadati SA. Evaluation of silver nanoparticles produced by fungus Fusarium oxysporum. Int J Nanotechnol. 2009;6:973–983.
  • Mohammadian A, Shojaosadati, Rezaee MH. Fusarium oxysporum mediates photogeneration of silver nanoparticles. Sci Iran. 2007;14:323–326.
  • Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci. 2008;4:141–144.
  • Ingle A, Gade A, Bawaskar M, Rai M. Fusarium solani, a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanoparticle Res. 2009;11:2079–2085.
  • Deepa K, Panda T. Synthesis of gold nanoparticles from different cellular fractions of Fusarium oxysporum. J Nanosci Nanotechnol. 2014;14:3455–3463.
  • Bawaskar M, Gaikwad S, Ingle A, Rathod D, Gade A, Duran N, Marcato PD, Rai M. A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr Nanosci. 2010;6:376–380.
  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mat Res Bull. 2008;43:1164–1170.
  • Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Koźlecki T. Synthesis of silver nanoparticles using microorganisms. Mater Sci. 2008;26:219–224.
  • Zhang X, He X, Wang K, Wang Y, Li H, Tan W. Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp. J Nanosci Nanotechnol. 2009;10:5738–5744.
  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surfaces B. 2009;7:133–137.
  • Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem. 2009;44, 939–943.
  • Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK. Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF, the process and optimization. J Nanoparticle Res. 2010;13:3129–3137.
  • Maliszewska I, Juraszek A Bielska K. Green synthesis and characterization of silver nanoparticles using ascomycota fungi Penicillium nalgiovense AJ12. J Cluster Sci. 2013;25:989–1004.
  • Singh D, Rathod V, Ninganagouda S, Hiremath J, Singh, AK, Mathew J. Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl. 2014; doi:10.1155/2014/408021.
  • Kumar R, Liu D, Zhang L. Advances in proteinous biomaterials. J Biobased Mater Bioenergy. 2008;2:1–24.
  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett. 2006;61:1413–1418.
  • Navazi ZR, Pazouki M, Halek FS. Investigation of culture conditions for biosynthesis of silver nanoparticles using Aspergillus fumigates. Iran J Biotechnol. 2010;8:56–61.
  • Saravanan M, Nanda A. Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surfaces B. 2010;77:214–218.
  • Verma VC, Kharwar RN, Gange AC. Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine. 2010;5:33–40.
  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci. 2012;13:466–476.
  • Jaidev LR, Narasimha G. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surfaces B. 2010;81:430–433.
  • Kumar RR, Priyadharsani PK, Thamaraiselvi K. Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamari. J Nanoparticle Res. 2012;14:860–868.
  • Raliya R, Tarafdar JC. 2014 Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach. Int Nano Lett. 2014;93:3–10.
  • Klaus T, Joerger R, Olsson E, Granqvist CG. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA. 1999;96: 13611–13614.
  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R. Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed Engl. 2001;40(19):3585–3588.
  • Sastry M, Ahmad A, Khan MI, Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci. 2003;85:162–170.
  • Shahi SK, Patra M. Biotechnological aspect for the synthesis of bioactive nanoparticle and their formulation active against human pathogenic fungi. Rev Adv Mat Sc. 2003;5:501–509.
  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surfaces B. 2006;53:55–59.
  • Chen JC, Lin ZH, Ma XX. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol. 2003;37:105–108.
  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol. 2009;48:173–179.
  • Devi TP. Kulanthaivel S, Kamil D, Borah JL, Prabhakaran N, Srinivasa N. Biosynthesis of silver nanoparticles from Trichoderma species. Indian J Exp Biol 2013;51:543–547.
  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surfaces B. 2009;68:88–92.
  • Gade A, Gaikwad S, Duran N, Rai M. Screening of different species of Phoma for synthesis of silver nanoparticles. Biotechnol Appl Biochem. 2013;60(5):482–493.
  • Gade A, Rai M, Karwa A, Bonde P, Ingle A. Extracellular biosynthesis of silver nanoparticles by Pleurotus species. Int J Med Mushroom Res. 2007;9(3–4):298–299.
  • Nithya R, Ragunathan, R. Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Digest J Nanomater Biostruct. 2009;4:623–629.
  • Philip D. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochimica Acta Part A. 2009;73:374–381.
  • Sanghi R, Verma PA. A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus. Chem Eng J. 2009;155:886–891.
  • Mishra AN, Bhadauria S, Gaur MS, Pasricha R. Extracellular microbial synthesis of gold nanoparticles using fungus Hormoconis resinae. JOM. 2010;62:45–48.
  • Bao H, Hao N, Yang Y, Zhao D. Biosynthesis of biocompatible cadmium telluride quantum dots using yeast cells. Nano Res. 2003;3:491–498.
  • Rashmi K, Krishnaveni T, Ramanamurthy S, Mohan PM. Characterization of cobalt nanoparticle from a cobalt resistant strain of Neurospora crassa. In: International Symposium of Research Students on Materials Science and Engineering; December 20–22. Chennai; 2004.
  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M. Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surfaces B. 2011;83:42–48.
  • Kar PK, Murmu S, Saha S, Tandon V, Acharya K. Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS ONE 2014;9(1):e84693.
  • Singh D, Rathod V, Ninganagouda S, Herimath J, Kulkarni P. Biosynthesis of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and its antibacterial activity against pathogenic gram negative bacteria. J Pharm Res. 2013;7:448–453.
  • Jain N, Bhargava A, Majumdar S, Tarafdar J, Panwar J. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale. 2011;3(2):635–641.
  • Soni N, Prakash S. Factors affecting the geometry of silver nanoparticles synthesis in Chrysosporium tropicum and Fusarium oxysporum. Am J Nanotechnol. 2011;2(1):112–121.
  • Sunkar S, Nachiyar CV. Endophytic fungi mediated extracellular silver nanoparticles as effective antibacterial agents. Int J Pharm Pharm Sci. 2013;5:95–100.
  • Duran N, Marcato PD, Alves OL, DeSouza G, Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol. 2005;3:1–8.
  • Kumar SA, Abyaneh, MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett. 2007;29:439–445.
  • Pérez-de-Luque A, Rubiales D, Marquina CI, Ibarra MR, de la Fuente JM. Nanoparticles in agriculture, development of smart delivery systems for plant research NanoSpain. Braga-Portugal, 14–18 April, 2008.
  • Abd-Elsalam, KA. Nanoplatforms for plant pathogenic fungi management. Fungal Genomics Biol. 2012;2:e107.
  • Kah M, Beulke S, Tiede K, Hofmann T. Nano-pesticides: state of knowledge, environmental fate and exposure modelling. Crit Rev Environ Sci Technol. 2013;43:1823–67.
  • Li ZZ, Chen JF, Liu F, Liu AQ, Wang Q, Sun HY, Wen LX. Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci. 2007;63:241–246.
  • Rai M. Ingle A. Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol. 2012;94:287–293.
  • Choudhury SR, Nair KK, Kumar R, Gogoi R, Srivastava C, Gopal M, Subhramanyam BS, Devakumar C, Goswami A. Nanosulfur: a potent fungicide against food pathogen, Aspergillus niger. AIP Conf Proc. 2010;1276:154–157.
  • Liu WT. Nanoparticles and their biological and environmental applications. J Biosci Bioeng. 2006;102:1–7.
  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 2008;17:372–386.
  • Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent, a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275:177–182.
  • Aymonier C, Scholotterbeck U, LAntonietti P, Zacharias R, Thomann JC, Tiller Mecking S. Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun. 2002;24:3018–3019.
  • Retchkiman-Schabes PS, Canizal G, Becerra-Herrera R, Zorrilla C, Liu HB, Ascencio JA. Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt Mater. 2006;29:95–99.
  • Gu H, Ho PL, Tong E, Wang L, Xu B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 2003;3, 1261–1263.
  • Ahmad Z, Pandey R, Sharma S, Khuller GK. Alginate nanoparticles as antituberculosis drug carriers, formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci. 48;2005:171–176.
  • Gong P, Li H, He X, Wang K, Hu J, Tan W. Preparation and antibacterial activity of Fe3O4 Ag nanoparticles. Nanotechnology. 2007;18:604–611.
  • Lead JR, Wilkison KJ. Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem. 2006;3:159–171.
  • Kim SW, Kim KS, Lamsal K, Kim Y-J, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol. 2012;19:760–764.
  • Prabhu S. Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012;2:32.
  • Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11(6):371–384.
  • Zeng F, Hou C, Wu SZ, Liu XX, Tong Z, Yu SN. Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities. Nanotechnology. 2007;18:1–8.
  • Falletta E, Bonini M, Fratini E, Lo Nostro A, Pesavento G, Becheri A. Clusters of poly (acrylates) and silver nanoparticles: structure and applications for antimicrobial fabrics. J Phys Chem C. 2008;112:11758–11766.
  • Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother. 2008;61:869–876.
  • Kim H, Kang H, Chu G, Byun H. Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenomenon 2008;135:15–18.
  • Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J, Kryštof V, Park HJ, Kim SH, Kim HJ, Choi SH. A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J. 2006;22:295–302.
  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS. Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J. 2009;25:376–380.
  • Park H-J, Kim SH, Kim HJ, Choi S-H. A new composition of nanosized silica-silver for control of various plant diseases plant. Pathol J. 2006;22(3):295–302.
  • Oh SD, Lee S, Choi SH, Lee IS, Lee YM, Chun JH, Park HJ. Synthesis of Ag and Ag–SiO2 nanoparticles by у-irradiation and their antibacterial and antifungal efficiency against Salmonella enteric serovar Typhimurium and Botrytis cinerea. Colloids Surfaces A. 2006;275:228–233.
  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. Fungus mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine. 2009;5:382–386.
  • Fateixa S, Neves MC, Almeida A, Oliveira J, Trindade T. Anti-fungal activity of SiO2/Ag2S nanocomposites against Aspergillus niger. Colloids Surfaces B. 2009;74, 304–308.
  • Ruffolo, SA, La Russa, MF, Malagodi M, Oliviero Rossi C, Palermo AM, Crisci GM. ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A. 2010;100:829–834.
  • Jo, YK, Kim BH, Jung G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis. 2009;93:1037–1043.
  • Woo KS, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK, Lee YS. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol. 2009;19:760–764.
  • Kasprowicz MJ, Kozioł M, Gorczyca A. The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol. 2010;56:247–253.
  • Musarrat J, Dwivedi, S, Singh BR, Al-Khedhairy AA, Azam Naqvi A. A production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Biores Technol. 2010;101:8772–8776.
  • He L, Liu, Y, Mustapha A, Lin M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microb Res. 2010;166:207–215.
  • Jung J-H, Kim S-W, Min J-S, Kim Y-J, Lamsal K, Kim KS. The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology. 2010;38(1):39–45.
  • Aguilar-Méndez MA, San Martín-Martínez E, Ortega-Arroyo L, Cobián-Portillo G, Sánchez-Espíndola E. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res. 2010;13:2525–2532.
  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochimica Acta Part A. 2012;93:95–99.
  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma SS, Pal A. Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol. 2013;62:677–683.
  • Khaydarov RR, Khaydarov RA, Evgrafova S, Estrin Y. Using silver nanoparticles as an antimicrobial agent. NATO Sci Peace Security Ser A. 2011;169–177.
  • Kanto T, Miyoshi A, Ogawa T, Maekawa K, Aino M. Suppressive effect of potassium silicate on powdery mildew of strawberry in hydroponics. J Gen Plant Pathol. 2004;70:207–211.
  • Kim KJ, Sung WS, Moon SK, Choi JS, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol. 2008;18:1482–1484.
  • Gogoi R, Dureja P, Singh PK. Nanoformulations: a safer and effective option for agrochemicals. Indian Farming. 2009;59(8):7–12.
  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, Heer Cde, Voorde SECGt, Wijnhoven SWP, Marvin HJP, Sips AJAM. Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol. 2009;53:52–62.
  • Taylor TM, Davidson PM, Bruce BD, Weiss J. Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr. 2005;45:587–605.
  • Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm. 2007;65:259–269.
  • Owolade OF, Ogunleti DO, Adenekan MO. Titanium dioxide affects disease development and yield of edible cowpea. Electron J Environ Agric Food Chem. 2008;7(50):2942–2947.
  • Rickman D, Luvall JC, Shaw J, Mask P, Kissel D, Sullivan D. Precision agriculture, changing the face of farming. [Internet]. 1999. Available from: wwwghccmsfcnasagove/precisionag/.
  • Yau CP, Wang L, Yu M, Zee SY, Yip WK. Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole-3-acetic acid and silver ions. J Exp Bot. 2004;55:547–555.
  • González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A. Nanoparticles as smart treatment-delivery systems in plants; assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot. 2008;101:187–195.
  • Wen LX, Li Z-Z, Zou H-K, Liu A-Q, Chen, J-F. Controlled release of avermectin from porous hollow silica nanoparticles. Pest Manag Sci. 2005;61:583–590.
  • FAO Crop Prospects and Food Situation. FAO Global Cereal Supply and Demand Indicators. [Internet]. 2008. (No. 2, 2008 April). Available from: http://wwwfaoorg/docrep/010/ai465e/ai465305htm.
  • NANOSYS GMBH Nano-Argentum 10 Technisches Merkblatt. [Internet]. 2005. Available from: http://wwwnanosysch/tedablas/d/nanoargentum230905pdf.
  • McKnight TE, Melechko AV, Griffin GD, Guillorn MA, Merkulov VI, Serna F, Hensley DK, Doktycz MJ, Lowndes DH, Simpson ML. Intracellular integration of synthetic nanostructures with viable cells for controlled biochemical manipulation. Nanotechnology. 2003;14:551–556.
  • Torney F, Trewyn BG, Lin SY, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol. 2007;2:295–300.
  • Rai M, Deshmukh S, Gade A, Elsalam K-A. Strategic nanoparticles-mediated gene transfer in plants and animals – a novel approach. Curr Nano. 2012;8:170–179.
  • Filipenko EA, Filipenko ML, Deineko EV, Shumnyi VK. Analysis of integration sites of T-DNA insertions in transgenic tobacco plants. Cytol Genet. 2007;41:199–203.
  • Kah M, Hofmann T. Nanopesticide research: current trends and future priorities. Environ Int. 2014;63:224–235.
  • Elchiguerra JL, Burt JL, Morones JR, Camacho- Bragado A, Gao X, Lara HH, Yacaman MJ. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol. 2005;3:1–10.
  • Yeo SY, Lee HJ, Jeong SH. Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci. 2003;38:2143–2147.
  • Banik S, Sharma P. Plant pathology in the era of nanotechnology. Indian Phytopathol. 2011;64:120–127.
  • Vittori-Antisari L, Carbone S, Fabrizi A, Gatti A, Vianello G. Response of soil microbial biomass to CeO2 nanoparticles. EQA. 2011;7:135–150.
  • Lee S, Kim S, Kim S, Lee I. Effects of soil-plant interactive system on response to exposure to ZnO nanoparticles. J Microbiol Biotechnol. 2012;22:1264–1270.
  • Monica RC, Cremonini R. Nanoparticles and higher plants. Caryologia. 2009;62:161–165.
  • Kumari M, Ernest V, Mukherjee A, Chandrasekaran N. In vivo nanotoxicity assays in plant models. Methods Mol Biol. 2012;926:399–410.
  • Corredor E, Testillano PS, Coronado M-J, González-Melendi P, Fernández-Pacheco R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Pérez-de-Luque A, Risueño MC. Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol. 2009;9:45.
  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano. 2009;3:3221–3227.
  • Lin D, Xing B. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut. 2007;20:1–8.
  • Ge Y, Schimel JP, Holden PA. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol. 2011;45:1659–1664.
  • Degrassi G, Bertani I, Devescovi G, Fabrizi A, Gatti A, Venturi V. Response of plant-bacteria interaction models to nanoparticles. EQA. 2012;8:39–50.
  • Nowack B, Ranville JF, Diamond S, Gallego-Urrea JA, Metcalfe C, Rose J, Horne N, Koelmans AA, Klaine SJ. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ Toxicol Chem. 2012;31:50–59.
  • Thul ST, Sarangi BK, Pandey RA. Nanotechnology in agroecosystem: implications on plant productivity and its soil environment. Expert Opin Environ Biol. 2013;2:2–7.
  • Fayaz AM, Balaji K, Girilal M, Kalaichelvan PT, Venkatesan R. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. Agric Food Chem. 2009;57:6246–6252.
  • Joshi P, Bonde S, Gaikwad S, Gade A, Abd-Elsalam KA, Rai M. Comparative studies on synthesis of silver nanoparticles by Fusarium oxysporum and Macrophomina phaseolina and its efficacy against bacteria and Malassezia furfur. J Bionanosci. 2013;7:1–5.