1,826
Views
14
CrossRef citations to date
0
Altmetric
Articles; Agriculture and Environmental Biotechnology

Phenol degradation by environmental bacteria entrapped in cryogels

, , , , , , & show all
Pages 514-521 | Received 12 Dec 2014, Accepted 14 Jan 2015, Published online: 19 Feb 2015

References

  • Bahidsky M, Hronec M. Direct hydroxylation of benzene to phenol. Petroleum Coal. 2004;46:49–55.
  • Neumann G, Tera R, Monson L, Kivisaar M, Schauer F, Heipieper HJ. Simultaneous degradation of atrazine and phenol by Pseudomonas sp. strain ADP: effect and adaptation. Appl Environ Microbiol. 2004;70:1907–1912.
  • Polymenakou P, Stephanou E. Effect of temperature and additional carbon sources on phenol degradation by an indigenous soil Pseudomonad. Biodegradation. 2005;16:403–413.
  • Tsai S-Y, Juang R-S. Biodegradation of phenol and sodium salicylate mixtures by suspended Pseudomonas putida CCRC 14365. J Hazard Mater. 2006;138:125–132.
  • Pessione E, Bosco F, Specchia V, Giunta C. Acinetobacter radioresistens metabolizing aromatic compounds. Optimization of the operative conditions for phenol degradation. Microbios. 1996;88:213–221.
  • Hudges E, Bayly R, Scurray R. Evidence for isofunctional enzymes in the degradation of phenol, m- and p-toluate, and p-cresol at catechol meta-cleavage pathways in Alcaligenes eutrophus. J Bacteriol. 1984;158:79–83.
  • Jiang Y, Wen J, Bai J, Jia X, Hu Z. Biodegradation of phenol at high initial concentration by Alcaligenes faecalis. J Hazard Mater. 2007;147:672–676.
  • Tallur P, Megadi V, Kamanavalli C, Ninnekar H. Biodegradation of p-Cresol by Bacillus sp. Strain PHN 1. Curr Microbiol. 2006;53:529–533.
  • Liu Y, Nikolausz M, Wang X. Biodegradation and detoxification of phenol using free and immobilized cells of Acinetobacter sp. XA05 and Sphyngomonas sp. FG03. J Environ Sci Health A. 2009;44:130–136.
  • Kunapuli U, Jahn MK, Lueders T, Geyer R, Heipieper HJ, Meckenstock RU. Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol. 2010;60:686–695.
  • Jones K, Trudgill P, Hopper D. Evidence of two pathways for the metabolism of phenol by Aspergillus fumigatus. Arch Microbiol. 1995;163:176–181.
  • Santos V, Linardi V. Phenol degradation by yeasts isolated from industrial effluent. J Gen Appl Microbiol. 2001;47:213–221.
  • Chtourou M, Ammar E, Nasri M, Medhioub K. Isolation of a yeast Trichosporon cutaneum, able to use low molecular weight phenolic compounds: application to olive mill waste water treatment. J Chem Technol Biotechnol. 2004;79:869–878.
  • Yan J, Jianping W, Hongmei L, Suliang Y, Zongding H. The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis. Biochem Eng J. 2005;24:243–247.
  • Lusta K, Starostina N, Gorkina N, Fikhte B, Lozinski V. Immobilization of E. coli cells in macroporous polyacrylamide cryogels. Appl Biochem Microbiol. 1988;24:418–426.
  • Stormo K, Crawford R. Preparation of encapsulated microbial cells for environmental applications. Appl Environ Microbiol. 1992;58:727–730.
  • Godjevargova T, Aleksieva Z, Ivanova D, Shivarova N. Biodegradation of phenol by Trichosporon cutaneum cells covalently bound to polyamide granules. Process Biochem. 1998;33:831–835.
  • Godjevargova T, Ivanova D, Aleksieva Z, Dimova N. Biodegradation of toxic organic components from industrial phenol production waste waters by free and immobilized Trichosporon cutaneum R57. Process Biochemistry. 2003;38:915–920.
  • Yordanova G, Ivanova D, Godjevargova T, Krastanov A. Biodegradation of phenol by immobilized Aspergillus awamori NRRL 3112 on modified polyacrylonitrile membrane. Biodegradation. 2009;20:717–726.
  • El-Naas MH, Al-Muhtaseb SA, Makhlouf S. Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel. J Hazard Mater. 2009;164:720–725.
  • Lozinski VI. Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B. Review: polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol. 2003;21:445–451.
  • Plieva F, Galaev I, Noppe W, Mattiasson B. Cryogel applications in microbiology. Trends Microbiol. 2008;16:543–551.
  • Lappin-Scott H, Costerton J. Microbial biofilms. Cambridge (England): Cambridge University Press; 2003. p. 15.
  • Peppas N, Mikos A. Preparation methods and structure of hydrogels. Boca Raton, FL: CRC Press; 1987. p. 24.
  • Loh K, Chung T, Ang W. Immobilized-cell membrane bioreactor for high-strength phenol wastewater. J Environ Eng. 2000;126:75–79.
  • King P, Warwick N. United States patent US 3,264,202. 1966 Aug.
  • Gnanou J, Hild G, Rempp P. Hydrophilic polyurethane networks based on poly(ethylene oxide): synthesis, characterization, and properties. Potential applications as biomaterials. Macromolecules. 1984;17:945–952.
  • Doycheva M, Petrova E, Stamenova R, Tsvetanov C, Riess G. UV-induced cross-linking of poly(ethylene oxide) in aqueous solution. Macromol Mater Eng. 2004;289:676–680.
  • Petrov P, Petrova E, Stamenova R, Tsvetanov CB, Reiss G. Cryogels of cellulose derivatives prepared via UV irradiation of moderately frozen systems. Polymer. 2006;47:6481–6484.
  • Selenska-Pobell S, Kampf G, Flemming K, Radeva G, Satchanska G. Bacterial diversity in soil samples from two Uranium waste piles as determined by rep-APD, RISA and 16S rDNA retrieval. Antonie van Leewenhoek. 2001;79:146–161.
  • Furukawa R, Chakrabarty S. Common induction and regulation of biphenyl, xylene, toluene and salycilate in Pseudomonas paucimobilis. J Bacteriol. 1983;154:1356–1363.
  • Satchanska G, Topalova Y, Dimkov R, Petrov P, Tsvetanov C, Selenska-Pobell S, Gorbovska A, Bogdanov V, Golovinsky E. Phenol biodegradation by two xenobiotics tolerant bacteria immobilized in polyethyleneoxide cryogels. Compt Rend Acad Bulg Sci. 2009;62:957–963.
  • Kahng H, Nam K, Kukor J, Yoon B, Lee D, Oh D, Kam S, Oh K. PAH utilization by Pseudomonas rhodesiae KK1 isolated from a former manufactured-gas plant site. Appl Microbiol Biotechnol. 2002;60:475–480.
  • Bodour AA, Drees KP, Maier RM. Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol. 2003;69:3280–3287.
  • Kvasnikov E, Klushnikova T. Microorganisms – oil destructors in water basins. Kiev: Naukova dumka; 1981. p. 76.
  • Hinteregger C, Leitner R, Loidl M, Ferschl A, Streichsbier F. Degradation of phenol and phenolic compounds by Pseudomonas putida EKII. Appl Microbiol Biotechnol [Internet]. 1992 (cited 2014 Oct 7);37:252–259. Available from: http://www.embl.org/