15,119
Views
5
CrossRef citations to date
0
Altmetric
Review; Medical Biotechnology

What are the nanobacteria?

, , &
Pages 826-833 | Received 27 Feb 2015, Accepted 15 May 2015, Published online: 22 Jun 2015

References

  • Kajander EO, Ciftcioglu N. Nanobacteria: an alternative mechanism for pathogenic intra-and extracellular calcification and stone formation. Proc Natl Acad Sci. 1998;95(14):8274–8279.
  • Alenazy MS, Mosadomi HA. Clinical implications of calcifying nanoparticles in dental diseases: a critical review. Int J Nanomed. 2014;9:27–31.
  • Joshipura KJ, Hung HC, Rimm EB, et al. Periodontal disease, tooth loss, and incidence of ischemic stroke. Stroke. 2003;34(1):47–52.
  • Joshipura KJ, Rimm E, Douglass C, et al. Poor oral health and coronary heart disease. J Dental Res. 1996;75(9):1631–1636.
  • Hung HC, Willett W, Merchant A, et al. Oral health and peripheral arterial disease. Circulation. 2003;107(8):1152–1157.
  • Çiftçioğlu N, McKay DS, Kajander EO. Association between nanobacteria and periodontal disease. Circulation. 2003;108(8):e58–e59.
  • Kajander EO, Kuronen I, Åkerman K, et al. Nanobacteria from blood: the smallest culturable autonomously replicating agent on earth. In: Hoover RB, editor. Instruments, methods, and missions for the investigation of extraterrestrial microorganisms. Vol. 3111. San Diego (CA): The International Society for Optical Engineering; 1997. p. 420–428.
  • Mathew G, McKay DS, Çiftçioglu N. Do blood-borne calcifying nanoparticles self-propagate? Int J Nanomed. 2008;3(2):265–275.
  • Khullar M, Sharma S, Singh S, et al. Morphological and immunological characteristics of nanobacteria from human renal stones of a north Indian population. Urol Res. 2004;32(3):190–195.
  • Miller VM, Rodgers G, Charlesworth JA, et al. Evidence of nanobacterial-like structures in calcified human arteries and cardiac valves. Am J Physiol Heart Circ Physiol. 2004;56(3):H1115–1124.
  • Kumar V, Farell G, Yu S, et al. Cell biology of pathologic renal calcification: contribution of crystal transcytosis, cell‐mediated calcification, and nanoparticles. J Investig Med. 2006;54(7):412–424.
  • Shiekh FA, Charlesworth JE, Kim SH, et al. Proteomic evaluation of biological nanoparticles isolated from human kidney stones and calcified arteries. Acta Biomater. 2010;6(10):4065–4072.
  • Schwartz MA, Lieske JC, Kumar V, et al. Human-derived nanoparticles and vascular response to injury in rabbit carotid arteries: proof of principle. Int J Nanomed. 2008;3(2):243–248.
  • Ciftcioglu N, Miller-Hjelle M, Hjelle J, et al. Inhibition of nanobacteria by antimicrobial drugs as measured by a modified microdilution method. Antimicrob Agents Chemother. 2002;46(7):2077–2086.
  • Raoult D, Drancourt M, Azza S, et al. Nanobacteria are mineralo fetuin complexes. PLOS Pathog. 2008;4(2):e41.
  • Martel J, Young JDE. Purported nanobacteria in human blood as calcium carbonate nanoparticles. Proc Natl Acad Sci . 2008;105(14):5549–5554.
  • Martel J, Wu CY, Young JD. Critical evaluation of gamma-irradiated serum used as feeder in the culture and demonstration of putative nanobacteria and calcifying nanoparticles. PLOS One. 2010;5(4):e10343.
  • Wu CY, Martel J, Young D, et al. Fetuin-A/albumin-mineral complexes resembling serum calcium granules and putative nanobacteria: demonstration of a dual inhibition-seeding concept. PloS One. 2009;4(11):e8058.
  • Young JD, Martel J, Young D, et al. Characterization of granulations of calcium and apatite in serum as pleomorphic mineralo-protein complexes and as precursors of putative nanobacteria. PLOS One. 2009;4(5):e5421.
  • Young JD, Martel J, Young L, et al. Putative nanobacteria represent physiological remnants and culture by-products of normal calcium homeostasis. PLOS One. 2009;4(2):e4417.
  • Sommer AP, Hassinen HI, Kajander EO. Light-induced replication of nanobacteria: a preliminary report. J Clin Laser Med Surg. 2002;20(5):241–244.
  • Bruckner M. Nanobacteria and nanobes – are they alive? [ Internet]. Bozeman, MT: Montana State University. [cited 2015 Feb 27]. Available from: http://serc.carleton.edu/microbelife/topics/nanobes/index.html
  • Kajander EO, Ciftcioglu N, Aho K, et al. Characteristics of nanobacteria and their possible role in stone formation. Urol Res. 2003;31(2):47–54.
  • Kutikhin AG, Brusina EB, Yuzhalin AE. The role of calcifying nanoparticles in biology and medicine. Int J Nanomed. 2012;7(10):339–350.
  • Miller-Hjelle MA, Hjelle JT, Ciftcioglu N, et al. Nanobacteria: methods for growth and identification of this recently discovered calciferous agent. In: Olson WP, editor. Rapid analytical microbiology. Surrey: Davis Horwood International Publishing, Ltd., 2003. p. 297–312
  • Çiftçioglu N, Kajander EO. Interaction of nanobacteria with cultured mammalian cells. Pathophysiology. 1998;4(4):259–270.
  • Ciftcioglu N, McKay DS, Mathew G, et al. Nanobacteria: fact or fiction? characteristics, detection, and medical importance of novel self‐replicating, calcifying nanoparticles. J Investig Med. 2006;54(7):385–394.
  • Dong Xia. Terror of the nanobacteria. [ Internet]. [cited 2013 Jun 14]. Available from: http://zhan.renren.com/h5/entry/3602888498040307841
  • Kajander E. Nanobacteria–propagating calcifying nanoparticles. Lett Appl Microbiol. 2006;42(6):549–552.
  • Çiftçioglu N, Björklund M, Kuorikoski K, et al. Nanobacteria: an infectious cause for kidney stone formation. Kidney Int. 1999;56(5):1893–1898.
  • Çiftçioğlu N, Vejdani K, Lee O, et al. Association between Randall's plaque and calcifying nanoparticles. Int J Nanomed. 2008;3(1):105–115.
  • Chen L, Huang X, Xu Q, et al. Cultivation and morphology of nanobacteria in sera of patients with kidney calculi. J Peking Univ Health Sci. 2010;42(4):443–446.
  • Hu W, Wang X, Xu T, et al. Establishment nephrolithiasis rat model induced by nanobacteria and analysis of stone formation. J Peking Univ Health Sci. 2010;42(4):433–435.
  • Torres VE, Wilson DM, Hattery RR, et al. Renal stone disease in autosomal dominant polycystic kidney disease. Am J Kidney Dis. 1993;22(4):513–519.
  • Shoskes DA, Thomas KD, Gomez E. Anti-nanobacterial therapy for men with chronic prostatitis/chronic pelvic pain syndrome and prostatic stones: preliminary experience. J Urol. 2005;173(2):474–477.
  • Zhou Z, Hong L, Shen X, et al. Detection of nanobacteria infection in type III prostatitis. Urology. 2008;71(6):1091–1095.
  • Shen X, Ming A, Li X, et al. Nanobacteria: a possible etiology for type III prostatitis. J Urol. 2010;184(1):364–369.
  • Zhang QH, Shen XC, Zhou ZS, et al. Decreased nanobacteria levels and symptoms of nanobacteria-associated interstitial cystitis/painful bladder syndrome after tetracycline treatment. Int Urogynecol J. 2010;21(1):103–109.
  • Zhang QH, Lu GS, Shen XC, et al. Nanobacteria may be linked to testicular microlithiasis in infertility. J Androl. 2010;31(2):121–125.
  • Bratos-Pérez MA, Sánchez PL, de Cruz SG, et al. Association between self-replicating calcifying nanoparticles and aortic stenosis: a possible link to valve calcification. Eur Heart J. 2008;29(3):371–376.
  • Candemir B, Ertas FS, Kaya CT, et al. Association between antibodies against calcifying nanoparticles and mitral annular calcification. J Heart Valve Dis. 2010;19(6):745–752.
  • Puskas L, Tiszlavicz L, Rázga Z, et al. Detection of nanobacteria-like particles in human atherosclerotic plaques. Acta Biol Hung. 2005;56(3):233–245.
  • Maniscalco BS, Taylor KA. Calcification in coronary artery disease can be reversed by EDTA–tetracycline long-term chemotherapy. Pathophysiology. 2004;11(2):95–101.
  • Kaya CT, Ertas FS, Hasan T, et al. Anticalcifying nanoparticle antibody titer is an independent risk factor for coronary artery calcification. Coron Artery Dis. 2011;22(6):394–400.
  • Sedivy R, Battistutti WB. Nanobacteria promote crystallization of psammoma bodies in ovarian cancer. APMIS. 2003;111(10):951–954.
  • Hudelist G, Singer C, Kubista E, et al. Presence of nanobacteria in psammoma bodies of ovarian cancer: evidence for pathogenetic role in intratumoral biomineralization. Histopathology. 2004;45(6):633–637.
  • Wang L, Shen W, Wen J, et al. An animal model of black pigment gallstones caused by nanobacteria. Dig Dis Sci. 2006;51(6):1126–1132.
  • Sheng-fu H, Jing E, Ciftciogiu N. Detection of nanobacteria in serum, bile and gallbladder mucosa of patients with cholecystolithiasis. Chin Med J. 2005;118(5):421–424.
  • Agababov R, Abashina T, Suzina N, et al. Link between the early calcium deposition in placenta and nanobacterial-like infection. J Biosci. 2007;32(2):1163–1168.
  • Pretorius AM, Sommer A, Aho K, et al. HIV and nanobacteria. HIV Med. 2004;5(6):391–393.
  • Marsh PD. Dental plaque as a biofilm and a microbial community – implications for health and disease. BMC Oral Health. 2006;6(Suppl 1):S14
  • Socransky SS, Haffajee AD. Dental biofilms: difficult therapeutic targets. Periodontology. 2002;28(1):12–55.
  • Marsh P. Dental plaque as a microbial biofilm. Caries Res. 2004;38(3):204–211.
  • Mandel ID, Gaffar A. Calculus revisited. J Clin Periodontol. 1986;13(4):249–257.
  • Beiswanger B, Segreto V, Mallatt M, et al. The prevalence and incidence of dental calculus in adults. J Clin Dent. 1988;1(3):55–58.
  • Hjelle JT, Miller-Hjelle MA, Poxton IR, et al. Endotoxin and nanobacteria in polycystic kidney disease. Kidney Int. 2000;57(6):2360–2374.
  • Shiekh FA, Khullar M, Singh S. Lithogenesis: induction of renal calcifications by nanobacteria. Urol Res. 2006;34(1):53–57.
  • Kajander EO, Ciftcioglu N, Miller-Hjelle MA, et al. Nanobacteria: controversial pathogens in nephrolithiasis and polycystic kidney disease. Curr Opin Nephrol Hypertens. 2001;10(3):445–452.
  • Bigelow MW, Wiessner JH, Kleinman JG, et al. Surface exposure of phosphatidylserine increases calcium oxalate crystal attachment to IMCD cells. Am J Physiol Renal Physiol. 1997;272(1):F55–F62.
  • Aihara K, Byer KJ, Khan SR. Calcium phosphate–induced renal epithelial injury and stone formation: Involvement of reactive oxygen species. Kidney Int. 2003;64(4):1283–1291.
  • Zhang SM, Tian F, Jiang XQ, et al. Evidence for calcifying nanoparticles in gingival crevicular fluid and dental calculus in periodontitis. J Clin Periodontol. 2009;80(9):1462–1470.
  • Yang F, Zeng J, Zhang W, et al. Evaluation of the interaction between calcifying nanoparticles and human dental pulp cells: a preliminary investigation. Int J Nanomed. 2011;15(6):13–18.
  • Zeng J, Yang F, Zhang W, et al. Association between dental pulp stones and calcifying nanoparticles. Int J Nanomed. 2011;6:109–118.
  • Jing J, Lu J, Hao Y, et al. Nanobacteria's potential involvement in enamel repair in caries. Med Hypotheses. 2009;73(3):359–360.
  • Duckworth RM, Huntington E. Evidence for putting the calculus: caries inverse relationship to work. Community Dent Oral Epidemiol. 2005;33(5):349–356.
  • Kolahi J, Shahmoradi M, Sadreshkavary M. Nanobacteria and dental practice. Raleigh: Lulu Press, Inc; 2012
  • Lin Y, Zheng R, He H, et al. Application of biomimetic mineralization: a prophylactic therapy for cracked teeth? Med Hypotheses. 2009;73(4):493–494.
  • Wang X, Liu W, Yang Z, et al. The detection of nanobacteria infection in serum of healthy Chinese people. Chin J Epidemiol. 2004;25(6):492–494. Chin.
  • Demir T. Is there any relation of nanobacteria with periodontal diseases? Med Hypotheses. 2008;70(1):36–39.
  • Abo-El-Sooud K, Hashem M, Ramadan A, et al. Research strategies for treatment of nanobacteria. Insight Nanotechnol. 2011;1:1–8.
  • Silay YS, Altundag K, Altundag O, et al. Bisphosphonates may inhibit development of atherosclerosis formation through its bactericidal effect on nanobacteria. Med Hypotheses. 2005;64(6):1239–1240
  • Eby GA. A hypothesis for anti-nanobacteria effects of gallium with observations from treating kidney disease. Med Hypotheses. 2008;71(4):584–590.
  • Kumar CA, Bagga MB, Mohan V, et al. An overview on clinical implications of nanobacteria. J Indian Acad Oral Med Radiol. 2011;23(3):S354–359
  • Kolahi J. Anti-nanobacterial therapy for prevention and control of periodontal diseases. Dent Hypotheses. 2011;2(1):4–8.