881
Views
2
CrossRef citations to date
0
Altmetric
Article; Medical Biotechnology

Concomitant treatment with beta-glucan and G-CSF ameliorates altered biochemical indices after cyclophosphamide-induced leukopenia in mice

, , &
Pages 970-976 | Received 02 Mar 2015, Accepted 29 May 2015, Published online: 24 Jun 2015

References

  • Brode S, Cooke A. Immune-potentiating effects of the chemotherapeutic drug cyclophosphamide. Crit Rev Immunol. 2008;28(2):109–126.
  • Colvin OM. An overview of cyclophosphamide development and clinical applications. Curr Pharm Des. 1999;5(8):555–560.
  • Salem ML, Diaz-Montero CM, Al-Khami AA, et al. Recovery from cyclophosphamide-induced lymphopenia results in expansion of immature dendritic cells which can mediate enhanced prime–boost vaccination antitumor responses in vivo when stimulated with the TLR3 agonist poly(I:C). J Immunol. 2009;182:2030–2040.
  • Salem ML, Al-Khami AA, El-Naggar SA, et al. Cyclophosphamide induces dynamic alterations in the host microenvironments resulting in a Flt3 ligand-dependent expansion of dendritic cells. J Immunol. 2010;184 1737–1747.
  • Salem ML, Al-Khami AA, El-Nagaar SA, et al. Kinetics of rebounding of lymphoid and myeloid cells in mouse peripheral blood, spleen and bone marrow after treatment with cyclophosphamide. Cell Immunol. 2012;276(1–2):67–74.
  • Zhu L, Yin Y, Xing J, et al. Therapeutic efficacy of Bifidobacterium longum-mediated human granulocyte colony-stimulating factor and/or endostatin combined with cyclophosphamide in mouse-transplanted tumors. Cancer Sci. 2009;100(10):1986–1990.
  • Kasymjanova G, Kreisman H, Dajczman E, et al. Utilization of granulocyte colony-stimulating factor in non-small cell lung cancer patients receiving carboplatin-based chemotherapy. J Support Oncol. 2004;2:56S–57S.
  • Rubinstein MP, Salem ML, Doedens AL, et al. G-CSF/anti-G-CSF antibody complexes drive the potent recovery and expansion of CD11b+Gr-1+ myeloid cells without compromising CD8+ T cell immune responses. J Hematol Oncol. 2013;6:75–85.
  • Cesana CC, Carlo-Stella, Regazzi E, et al. CD34+ cells mobilized by cyclophosphamide and granulocyte colony-stimulating factor (G-CSF) are functionally different from CD34+ cells mobilized by G-CSF. Bone Marrow Transplant. 1998;21(6):561–568.
  • Tari KI, Satake, Nakagomi K, et al. Effect of lentinan for advanced prostate carcinoma. Hinyokika Kiyo. 1994;40(2):119–123.
  • Patchen ML, MacVittie TJ, Solberg BD, et al. Survival enhancement and hemopoietic regeneration following radiation exposure: therapeutic approach using glucan and granulocyte colony-stimulating factor. Exp Hematol. 1990;18(9):1042–1048.
  • Patchen ML, Vaudrain T, Correira H, et al. In vitro and in vivo hematopoietic activities of betafectin PGG-glucan. Exp Hematol. 1998;26(13):1247–1254.
  • Lin H, She YH, Cassileth BR, et al. Maitake beta-glucan MD-fraction enhances bone marrow colony formation and reduces doxorubicin toxicity in vitro. Int Immunopharmacol. 2004;4(1):91–99.
  • Lin H, Cheung SW, Nesin M, et al. Enhancement of umbilical cord blood cell hematopoiesis by maitake beta-glucan is mediated by granulocyte colony-stimulating factor production. Clin Vaccine Immunol. 2007;14(1):21–27.
  • Lin H, De Stanchina E, Zhou XK, et al. Maitake beta-glucan enhances umbilical cord blood stem cell transplantation in the NOD/SCID mouse. Exp Biol Med (Maywood). 2009;234(3):342–353.
  • Lin H, de Stanchina E, Zhou XK, et al. Maitake beta-glucan promotes recovery of leukocytes and myeloid cell function in peripheral blood from paclitaxel hematotoxicity. Cancer Immunol Immunother. 2010;59(6):885–897.
  • Cramer D, Wagner ES, Li B, et al. Mobilization of hematopoietic progenitor cells by yeast-derived beta-glucan requires activation of matrix metalloproteinase-9. Stem Cells. 2008;26(5):1231–1240.
  • Tappel L, Zalkin H. Inhibition of lipid peroxidation in mitochondria by vitamin E. Arch Biochem Biophys. 1959;80:333–336.
  • Litwack G, Bothwell JW, Williams JN, et al. A colorimetric assay for xanthine oxidase in rat liver homogenates. J Biol Chem. 1953;200:303–310.
  • Paglia E, Valentine N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158–169.
  • Lin G, Yu X, Wang J, et al. Beneficial effects of 20(S)-protopanaxadiol on antitumor activity and toxicity of cyclophosphamide in tumor-bearing mice. Exp Ther Med. 2013;5(2):443–447.
  • Robak T, Lech-Maranda E, Robak P. Rituximab plus fludarabine and cyclophosphamide or other agents in chronic lymphocytic leukemia. Expert Rev Anticancer Ther. 2010;10:1529–1543.
  • Emadi A, Jones RJ, Brodsky RA. Cyclophosphamide and cancer: golden anniversary. Nature Rev Clin Oncol. 2009;6:638–647.
  • De Leve LD. Cellular target of cyclophosphamide toxicity in the murine liver: Role of glutathione and site of metabolic activation. Hepatology. 1996;24:830–837.
  • Abraham P, Rabi S. Nitrosative stress protein tyrosine nitration PARP activation and NAD depletion in the kidneys of rats after single dose of cyclophosphamide. Clin Exp Nephrol. 2009;13:281–87.
  • Ayhanci A, Nes Gu, Sahinturk S, et al. Seleno L-methionine acts on cyclophosphamide-induced kidney toxicity. Biol Trace Elem Res. 2009;136(Suppl. 2):171–179.
  • Mathew S, Kuttan G. Antioxidant activity of Tinospora cordifolia and its usefulness in the amelioration of cyclophosphamide induced toxicity. J Exp Clin Cancer Res. 1997;16:407–411.
  • Kaya H, Oral B, Ozguner F, et al. The effect of melatonin application on lipid peroxidation during cyclophosphamide therapy in female rats. Zentralbl Gynakol. 1999;121:499–502.
  • Premkumar K, Pachiappan A, Abraham SK, et al. Effect of Spirulina fusiformis on cyclophosphamide and mitomycin-C induced genotoxicity and oxidative stress in mice. Fitoterapia. 2001;72:906–911.
  • Soni S, Shrivastava V. Carbendazim induced histopathological changes and some enzyme activities (GOT, GPT, ACP and ALP) in liver and kidneys of male Rattus rattus. Int J Pharm Sci Health Care. 2013;5(3):19–35.
  • Davila JC, Lenherr A, Acosta D. Protective effect of flavonoid on drug-induced hepatotoxicity in vitro. Toxicology. 1989;57(3):267–286
  • Cole GW, Bradley. Hospital admission laboratory profile interpretation. The SGOT and SLDH-SGOT ratio used for the diagnosis of hepatic disease. Hum Pathol. 1973;4:85–88.
  • Subramanian V, Shenoy S, Joseph AJ. Dengue hemorrhagic fever and fulminant hepatic failure. Diag Dis Sci. 2005;50(6):1146–1147.
  • Senthilkumar S, Ebenezar KK Sathish V, et al. Modulation of the tissue defense system by squalene in cyclophosphamide induced toxicity in rats. Arch Med Sci. 2006;2:94–100.
  • Shrivastav V. Cyclophosphamide induced changes in certain enzymological (GOT GPT ACP and ALP) parameters of adult male Rattus norvegicus. Int J Res Rev Pharmacy App Sci. 2013;3(1):155–163.
  • Eisenhut M, Sidaras D, Barton P, et al. Elevated sweat sodium associated with pulmonary oedema in meningococcal sepsis. Eur J Clin Investig. 2004;34:576–579.
  • Eisenhut M, Wallace H, Barton P, et al. Pulmonary edema in meningococcal septicemia associated with reduced epithelial chloride transport. Pediatr Crit Care Med. 2006;7:119–124.
  • Eisenhut M. Changes in ion transport in inflammatory disease. J Inflam. 2006;3:5–20.
  • Chang ZQ, Lee JS., Hwang MH, et al. A novel _-glucan produced by Paenibacillus polymyxa JB115 induces nitric oxide production in RAW264.7 macrophages. J Vet Sci. 2009;10:165–167.
  • Liu C, Lin Q, Gao Y, et al. Characterization and antitumor activity of a polysaccharide from Strongylocentrotus nudus eggs. Carbohydr Polym. 2007;67:313–318.
  • Pires A, Ruthes A, Cadena S, et al. Cytotoxic effect of Agaricus bisporus and Lactarius rufus β-D-glucans on HepG2 cells. Int J Biol Macromol. 2013;58:95–103.
  • Carbonero E, Ruthes A, Freitas C, et al. Chemical and biological properties of a highly branched B-glucan from edible mushroom Pleurotus sajor-caju. Carbohydr Polym. 2012;90:814–819.
  • Celina M, Dore C, Tarciana C, et al. Anti-inflammatory, antioxidant and cytotoxic actions of β-glucan-rich extract from Geastrum saccatum mushroom. Int Immunopharmacol. 2007;7:1160–1169.