4,540
Views
14
CrossRef citations to date
0
Altmetric
Articles; Medical Biotechnology

An experimental investigation of the performance of a Collison nebulizer generating H1N1 influenza aerosols

, , , &
Pages 1142-1148 | Received 04 Apr 2015, Accepted 04 Jun 2015, Published online: 08 Jul 2015

References

  • Hinds WC. Aerosol technology. New York, NY: Wiley; 1999.
  • May KR. The Collison nebulizer: description, performance, and application. J Aerosol Sci. 1973;4:235–243.
  • Jensen PA, Todd WF, Davis GN, et al. Evaluation of eight bioaerosol samplers challenged with aerosols of free bacteria. Am Ind Hyg Assoc J. 1992;53:660–667.
  • Chen SK, Vesley D, Brosseau LM, et al. Evaluation of single-use masks and respirators for protection of health care workers against microbacterial aerosols. Am J Infect Control. 1994;22:65–74.
  • Forney TL, Bell EC, Bowdle DA. Evaluation of Erwinia herbicola as a surrogate biological warfare agent (BW) aerosol. Columbus, OH: Battelle Memorial Institute; 1997.
  • Heidelberg JF, Shahamat M, Levin M, et al. Effect of aerosolization on culturability and viability of gram-negative bacteria. Appl Environ Microbiol. 1997;63:3585–3588.
  • Mainelis G, Willeke K, Baron P, et al. Electrical charges on airborne microorganisms. J Aerosol Sci. 2001;32:1087–1110.
  • Mainelis G, Gorny RL, Reponen T, et al. Effect of electrical charges and fields on injury and viability of airborne bacteria. Biotech Bioeng J. 2002;79:229–241.
  • Agranovski IE, Agranovski V, Reponen T, et al. Development and evaluation of a new personal sampler for culturable airborne microorganisms. Atmos Environ. 2002;36:889–898.
  • Stone RC, Johnson DL. A note on the effect of nebulization time and pressure on the culturability of Bacillus subtilis and Pseudomonas fluorescens. Aerosol Sci Technol. 2002;36:536–539.
  • BGI Inc. Collison nebulizer – instructions [Internet]. Waltham. MA; 2002. Available from: http://bgi.mesalabs.com/wp-content/uploads/sites/35/2014/10/Collison.pdf
  • John W. The characteristics of environmental and laboratory-generated aerosols. In: Willeke K, Baron PA, editors. Aerosol measurement: principles, techniques and applications. New York, NY: Van Nostrand Reinhold; 1993. p. 54–76.
  • Ulevicius V, Willeke K, Grinshpun SA, et al. Aerosolization of particles from a bubbling liquid: characteristics and generator development. Aerosol Sci Technol. 1997;26:175–190.
  • Cox CS. The aerosol survival and cause of death of Escherichia coli K12. J Gen Microbiol. 1968;54:169–175.
  • Cox CS. The cause of loss of viability of airborne Escherichia coli K12. J Gen Microbiol. 1969;7:77–80.
  • Israeli E. Effect of aerosolization and lyophilization on macromolecular synthesis in E. coli. In Sixth International Symposium on Aerobiology; 1972 September 3–7; Technical University at Enschede, The Netherlands. New York, NY: Wiley; 1973.
  • Israeli E, Gitelman J, Lighhart B. Death mechanisms in microbial bioaerosols with special reference to freeze-dried analog. In: Lighthart B, Mohr AJ, editors. Atmospheric microbial aerosols, theory and applications. New York, NY: Chapman and Hall; 1994. p. 166–191.
  • Marthi B, Fieland VP, Walter M, et al. Survival of bacteria during aerosolization. Appl Environ Microbiol. 1990;56:3463–3467.
  • Griffiths WD, Decosemo GAL. The assessment of bioaerosols: a critical review. J Aerosol Sci. 1994;25:1425–1458.
  • Griffiths WD, Stewart IW, Reading AR, et al. Effect of aerosolization, growth phase and residence time in spray and collection fluids on the culturability of cells and spores. J Aerosol Sci. 1996;27:803–820.
  • Stewart SL, Grinshpun SA, Willeke K, et al. Effect of impact stress on microbial recovery on an agar surface. Appl Environ Microbiol 1995;61:1232–1239.
  • Reponen T, Willeke K, Ulevicius V, et al. Techniques for dispersion of microorganisms into air. Aerosol Sci Technol. 1997;27:405–421.
  • Mainelis G, Berry D, An HR, et al. Design and performance of a single-pass bubbling bioaerosol generator. Atmos Environ. 2005;39:3521–3533.
  • Rule AM, Schwab KJ, Kesavan J, et al. Assessment of bioaerosol generation and sampling efficiency based on Pantoea agglomerans. Aerosol Sci Technol. 2009;43:620–628.
  • First MW, Macher J, Gussman R, et al. Nebulizer characteristics for certification tests of biosafety cabinets with bacteria and simulants. J Am Biol Safety Assoc. 1998;3:26–29.
  • Zarrin F, Kaufman SL, Socha JR. Droplet size measurements of various nebulizers using differential electrical mobility particle sizer. J Aerosol Sci. 1991;22(S1):S343–S346.
  • Hogan CJ, Kettleson EM, Lee MH, et al. Sampling methodologies and dosage assessment techniques for submicrometer and ultrafine virus particles. J Appl Microbiol. 2005;99:1422–1434.
  • Tuttle RS, Sosna WA, Daiels DE, et al. Design, assembly, and validation of a nose-only inhalation exposure system for studies of aerosolized viable influenza H5N1 virus in ferrets. Virol J. 2010;7:135.
  • Grinshpun SA, Willeke K, Ulevicius V, et al. Effect of impaction, bounce, and re-aerosolization on the collection efficiency of impingers. Aerosol Sci Technol. 1997;26:326–342.
  • Willeke K, Lin XJ, Grinshpun SA. Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Sci Technol. 1998;28:439–456.
  • Balazy A, Toivola M, Adhikari A, et al. Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks? Am J Infect Control. 2006;34:51–57.
  • Eninger RM, Adhikari A, Reponen T, et al. Differentiating between physical and viable penetrations when challenging respirator filters with bioaerosols. Clean – Soil, Air, Water. 2008;36:615–621.
  • Eninger R, Honda T, Adhikari A, et al. Filter performance of N99 and N95 facepiece respirators against viruses and ultrafine particles. Ann Occup Hyg. 2008;52:385–396.
  • Turgeon N, Toulouse MJ, Matel B, et al. Comparison of five bacteriophages as models for viral aerosol studies. Appl Environ Microbiol. 2014;80:4242–4250.
  • Verreault D, Moineau S, Duchaine C. Methods for sampling of airborne viruses. Microbiol Mol Biol Rev. 2008;72:413–444.
  • Qian Y, Willeke K, Ulevicius V, et al. Dynamic size spectrometry of airborne microorganisms: laboratory evaluation and calibration. Atmos Environ. 1995;29:1123–1129.
  • Tang JW. The effect of environmental parameters on the survival of airborne agents. J R Soc Interface. 2009;6:S737–S746.
  • Dawood FS, Jain S, Finelli L, et al. Emergence of a novel swine-origin Influenza A (H1N1) virus in humans. New Eng J Med. 2009;360:2605–2615.
  • Kim SY, Kim M, Lee S, et al. Survival of microorganisms on antimicrobial filters and the removal efficiency of bioaerosols in an environmental chamber. Microbiol Biotech J. 2012;22:1288–1295.
  • WHO manual on animal influenza diagnosis and surveillance [Internet]. Geneva, Switzerland: World Health Organization; 2002. Available from: http://www.who.int/vaccine_research/diseases/influenza/WHOmanual_on_animal-diagnosis_and_surveillance_2002_5.pdf.
  • Heimbuch BK, Wallace WH, Kinney K, et al. A pandemic influenza preparedness study: use of energetic methods to decontaminate filtering facepiece respirators contaminated with H1N1 aerosols and droplets. Am J Infect Control. 2011;39:e1–e9.
  • Allaire A, Luong MX, Smith KP. Basics of cell culture. In: Stein GS, Borowski M, Luong MX, Shi MJ, Smith KP, Vazquez P, editors. Human stem cell technology and biology: a research guide and laboratory manual. New York, NY: Wiley; 2011. p. 19–32.
  • Finney DJ. Statistical methods in biological assays. 2nd ed. New York, NY: Hafner; 1964.
  • Kramer A, Schwebke I, Kampfl G. How long do nosocomial pathogens persist on intimate surfaces? BMC Infect Dis. 2006;6:130.
  • Kim S, Ramakrishnan M, Raynor P, et al. Effects of humidity and other factors on the generation and sampling of a coronavirus aerosol. Aerobiologia. 2007;23:239–248.
  • Hermann JR, Hoff SJ, Yoon, KJ, et al. Optimization of a sampling system for recovery and detection of airborne porcine reproductive and respiratory syndrome virus and swine influenza virus. Appl Environ Microbiol. 2006;72:4811–4818.