2,849
Views
11
CrossRef citations to date
0
Altmetric
Articles; Food Biotechnology

Optimization of medium composition for two-step fermentation of vitamin C based on artificial neural network–genetic algorithm techniques

, , , &
Pages 1128-1134 | Received 12 Mar 2015, Accepted 16 Jun 2015, Published online: 13 Jul 2015

References

  • Zhang J, Liu LM, Liu J, et al. Progress in biotechnological production of vitamin C. J Food Sci Biotechnol. 2008;27(5):1–7.
  • Zhang J, Liu J, Shi Z, et al. Manipulation of B. megaterium growth for efficient 2-KLG production by K. vulgare. Process Biochem. 2010;45:602–606.
  • Ai BL, Li JZ, Song JL, et al. Butyric acid fermentation from rice straw with undefined mixed culture: enrichment and selection of cellulolytic butyrate-producing microbial community. Int J Agric Biol. 2013;15(6):1075–1082.
  • Feng S, Sun CB, Zhang ZZ, et al. Effects of Bacillus megaterium on growth and 2-KGA synthesizing of Gluconobacter oxydans in vitamin C two-step fermentation process. Chin J Microbiol. 1998;18(1):6–9.
  • Zou W, Zhou MD, Liu LM, et al. Reconstruction and analysis of the industrial strain Bacillus megaterium WSH002 genome-scale in silico metabolic model. J Biotechnol. 2013;164(4):503–509.
  • Ye C, Zou W, Xu N, et al. Metabolic model reconstruction and analysis of an artificial microbial ecosystem for vitamin C production. J Biotechnol. 2014;20(10):61–67.
  • Zhou J, Ma Q, Yi H, et al. Metabolome profiling reveals metabolic cooperation between Bacillus megaterium and Ketogulonicigenium vulgare during induced swarm motility. Appl Environ Microbiol. 2011;77(19):7023–7030.
  • Zou W, Liu LM, Zhang J, et al. Reconstruction and analysis of a genome-scale metabolic model of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. J Biotechnol. 2012;161(1):42–48.
  • Zou W, Liu LM, Chen J. Structure mechanism and regulation of an artificial microbial ecosystem for vitamin C production. Crit Rev Microbiol. 2013;39(3):247–255.
  • Fan SC, Zhang ZY, Zou W, et al. Development of a minimal chemically defined medium for Ketogulonicigenium vulgare WSH001 based on its genome-scale metabolic model. J Biotechnol. 2014;169(10):15–22.
  • Du J, Zhou J, Xue J, et al. Metabolomic profiling elucidates community dynamics of the Ketogulonicigenium vulgare–Bacillus megaterium consortium. Metabolomics. 2012;8(5):960–973.
  • Zhu YB, Liu J, Du GC, et al. A high throughput method to screen companion bacterium for 2-keto-L-gulonic acid biosynthesis by co-culturing Ketogulonicigenium vulgare. Process Biochem. 2012;47(9):1428–1432.
  • Takagi Y, Sugisawa T, Hoshino T. Continuous 2-keto-L-gulonic acid fermentation from L-sorbose by Ketogulonigenium vulgare DSM 4025. Appl Microbiol Biotechnol. 2009;82:1049–1056.
  • Li Y, Zhou B, Liu YP, et al. Study on new strains in fermentation of vitamin C. J Microbiol. 2002;22(2):26–32.
  • Baş D, Boyaci İH. Modeling and optimization I: usability of response surface methodology. J Food Eng. 2007;78:836–845.
  • Banik RM, Santhiagu A, Upadhyay SN. Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology. Bioresour Technol. 2007;98(4):792–797.
  • Baş D, Boyaci İH. Modeling and optimization II: comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J Food Eng. 2007;78:846–854.
  • Singh A, Majumder A, Goyal A. Artifical intelligence based optimization of exocellular glucansucrase production from Leuconostoc dextranicum NRRL B-1146. Bioresour Technol. 2008;99:8201–8206.
  • Singh V, Khan M, Khan S, et al. Optimization of actinomycin V production by Streptomyces triostinicus using artificial neural network and genetic algorithm. Appl Microbiol Biotechnol. 2009;82(2):379–385.
  • Almeida JS. Predictive non-linear modeling of complex data by artificial neural networks. Curr Opin Biotechnol. 2002;13(1):72–76.
  • Lyu SX, Guo ZY, Pan J, et al. Effect of rare earth elements on vitamin C fermentation by mixed cultures. Int J Agric Bio. 2014;16(6):1135–1140.
  • Jiang YY, Guo ZY, Zhang CG. Study on the purification of 2-keto-L-gulonate reductase and its physical, chemical and enzymic properties. Chin J Biotechnol. 1997;13(4):400–405.
  • Gao M, Lv SX, Jin YN, et al. Optimization of fermentation conditions for two-step fermentation of vitamin C. Sci Tech Food Ind. 2012;14(33):235–238.
  • Fang YY, Feng ZB, Zhang YX, et al. Optimization of fermentation conditions of tempeh by response surface analysis. Sci Tech Food Ind. 2009;4:168–170.
  • Zhu T, Heo H, Row K. Optimization of crude polysaccharides extraction from Hizikia fusiformis using response surface methodology. Carbohydr Polymers. 2010;82(1):106–110.
  • Wang X, Xu P, Yuan Y, et al. Modeling for gellan gum production by Sphingomonas paucimobilis ATCC 31461 in a simplified medium. Appl Environ Microbiol. 2006;72(5):3367–3374.