3,461
Views
2
CrossRef citations to date
0
Altmetric
Articles; Agriculture and Environmental Biotechnology

Transcriptional analyses of an ethanol inducible promoter in Escherichia coli and tobacco for production of cellulase and green fluorescent protein

&
Pages 1043-1052 | Received 10 Feb 2015, Accepted 22 Jun 2015, Published online: 17 Jul 2015

References

  • Alvira P, Tomás-Pejó E, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol. 2010;101(13):4851–4861.
  • Sun J, Zhou X. Utilization of lignocellulose-feeding insects for viable biofuels: an emerging and promising area of entomological science. In: Liu T, Kang L, editors. Recent advances in entomological research. From molecular biology to pest management. Heidelberg: Springer; 2011. p. 434–500.
  • Edwards MC, Henriksen ED, Yomano LP, et al. Addition of genes for cellobiase and pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich lignocellulosic biomass. Appl Environ Microbiol. 2011;77 (15):5184–5191.
  • Bokinsky G, Peralta-Yahya PP, George A, et al. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci USA. 2011;108(50):19949–19954.
  • Steen EJ, Kang Y, Bokinsky G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature. 2010;463(7280):559–562.
  • Ibrahim E, Jones KD, Hossenya EN. Molecular cloning and expression of cellulase and polygalacturonase genes in E. coli as a promising application for biofuel production. J Pet Environ Biotechnol. 2013;4(3):1000147.
  • Atsumi S, Cann AF, Connor MR, et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng. 2008;10(6):305–311.
  • Hanai T, Atsumi S, Liao JC. Engineered synthetic pathway for isopropanol production in Escherichia coli. Appl Environ Microbiol. 2007;73(24):7814–7818.
  • Ingram LO, Aldrich HC, Borges AC, et al. Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog. 1999;15(5):855–866.
  • Dien BS, Cotta MA, Jeffries TW. Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol. 2003;63(3):258–266.
  • Flipphi M, Kocialkowska J, Felenbok B. Characteristics of physiological inducers of the ethanol utilization (alc) pathway in Aspergillus nidulans. Biochem J. 2002;364(Pt 1):25–31.
  • Mathieu M, Fillinger S, Felenbok B. In vivo studies of upstream regulatory cis-acting elements of the alcR gene encoding the transactivator of the ethanol regulon in Aspergillus nidulans. Mol Microbiol. 2000;36(1):123–131.
  • Battaglia R, Brambilla V, Colombo L, et al. Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system. Mech Dev. 2006;123(4):267–276.
  • Roslan HA, Salter MG, Wood CD, et al. Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana. Plant J. 2001;28(2):225–235.
  • Caddick MX, Greenland AJ, Jepson I, et al. An ethanol inducible gene switch for plants used to manipulate carbon metabolism. Nat Biotechnol. 1998;16(2):177–180.
  • Nikolaev I, Mathieu M, van de Vondervoort P, et al. Heterologous expression of the Aspergillus nidulans alcR-alcA system in Aspergillus niger. Fungal Genet Biol. 2002;37 (1):89–97.
  • Panozzo C, Capuano V, Fillinger S, et al. The zinc binuclear cluster activator AlcR is able to bind to single sites but requires multiple repeated sites for synergistic activation of the alcA gene in Aspergillus nidulans. J Biol Chem. 1997;272(36):22859–22865.
  • Pang H, Zhang P, Duan CJ, et al. Identification of cellulase genes from the metagenomes of compost soils and functional characterization of one novel endoglucanase. Curr Microbiol. 2009;58(4):404–408.
  • Haseloff J, Siemering KR, Prasher DC, et al. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA. 1997;94(6):2122–2127.
  • Mattanovich D, Rüker F, Machado AC, et al. Efficient transformation of Agrobacterium spp. by electroporation. Nucleic Acids Res. 1989;17(16):6747.
  • Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–497.
  • Yang Y, Li R, Qi M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J. 2000;22(6):543–551.
  • Lee S, Oh E, Oh Y, et al. Increased ethanol resistance in ethanolic Escherichia coli by Insertion of heat-shock genes BEM1 and SOD2 from Saccharomyces cerevisiae. Biotechnol Bioprocess Eng. 2010;15(5):770–776.
  • Sochivko DG, Fedorov AA, Varlamov DA, et al. Simulation of the PCR amplification as two-type-particle branching process. Dokl Biochem Biophys. 2010;434:239–241.1
  • Ginzinger DG. Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol. 2002;30(6):503–512.
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29 (9):e45.
  • Assaad FF, Signer ER. Cauliflower mosaic virus P35S promoter activity in Escherichia coli. Mol Gen Genet. 1990;223(3):517–520.
  • Lewin A, Jacob D, Freytag B, et al. Gene expression in bacteria directed by plant-specific regulatory sequences. Transgenic Res. 1998;7(6):403–411.
  • Chong H, Huang L, Yeow J, et al. Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS One. 2013;8(2):e57628.
  • Keseler IM, Mackie A, Peralta-Gil M, et al. EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res. 2013;41(Database issue):D605–D612.
  • Felenbok B, Flipphi M, Nikolaev I. Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. Prog Nucl Acid Res Mol Biol. 2001;69:149–204.
  • Haft RJ, Keating DH, Schwaegler T, et al. Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc Natl Acad Sci U S A. 2014;111(25):E2576–E2585.
  • Van Dyk TK, Reed TR, Vollmer AC, et al. Synergistic induction of the heat shock response in Escherichia coli by simultaneous treatment with chemical inducers. J Bacteriol. 1995;177(20):6001–6004.
  • Blaszczak A, Zylicz M, Georgopoulos C, et al. Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Escherichia coli by regulating the switch between sigma 70 and sigma 32 factors assembled with RNA polymerase. EMBO J. 1995;14 (20):5085–5093.
  • Deveaux Y, Peaucelle A, Roberts GR, et al. The ethanol switch: a tool for tissue-specific gene induction during plant development. Plant J. 2003;36(6):918–930.
  • Klose H, Günl M, Usadel B, et al. Ethanol inducible expression of a mesophilic cellulase avoids adverse effects on plant development. Biotechnol Biofuels. 2013;6(1):53.