886
Views
1
CrossRef citations to date
0
Altmetric
Articles; System Biology

The overproduction of Synechocystis sp. PCC 6803 heat-shock protein (Sll0170) protects Escherichia coli against high-temperature stress

, &
Pages 1201-1207 | Received 16 Jun 2015, Accepted 15 Jul 2015, Published online: 17 Aug 2015

References

  • Whitton BA, Potts M. The ecology of cyanobacteria: their diversity in time and space. Dordrecht: Kluwer Academic Publisher; 2000.
  • Zhang Y, Niu X, Shi M, et al. Identification of a transporter Slr0982 involved in ethanol tolerance in cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol. 2015;6:1–13.
  • Suzuki I, Simon WJ, Slabas AR. The heat shock response of Synechocystis sp. PCC 6803 analysed by transcriptomics and proteomics. J Exp Bot. 2006;57:1573–1578.
  • Düppre E, Rupprecht E, Schneider D. Specific and promiscuous functions of multiple DnaJ proteins in Synechocystis sp. PCC 6803. Microbiology. 2011;157:1269–1278.
  • Kim J, Ahn M, Park Y, et al. Synechocystis PCC6803 and PCC6906 dnaK2 expression confers salt and oxidative stress tolerance in Arabidopsis via reduction of hydrogen peroxide accumulation. Mol Biol Rep. 2014;41:1091–1101.
  • Rupprecht E, Gathmann S, Fuhrmann E, et al. Three different DnaK proteins are functionally expressed in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology. 2007;153:1828–1841.
  • Nakamoto H, Suzuki M, Kojima K. Targeted inactivation of the hrcA repressor gene in cyanobacteria. FEBS Lett. 2003;549:57–62.
  • Sato M, Nimura-Matsune K, Watanabe S, et al. Expression analysis of multiple dnaK genes in the cyanobacterium Synechococcus elongatus PCC 7942. J Bacteriol. 2007;189:3751–3758.
  • Nakamoto H, Fujita K, Ohtaki A, et al. Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins. J Biol Chem. 2014;289:6110–6119.
  • Rupprecht E, Düppre E, Schneider D. Similarities and singularities of three DnaK proteins from the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 2010;51:1210–1218.
  • Nimura K, Takahashi H, Yoshikawa H. Characterization of the dnaK multigene family in the cyanobacterium Synechococcus sp. strain PCC7942. J Bacteriol. 2001;183(4):1320–1328.
  • Mandel M, Higa A. Calcium-dependent bacteriophage DNA infection. J Mol Biol. 1970;53:159–162.
  • Fregel R, Rodriguez V, Cabrera VM. Microwave improved Escherichia coli transformation. Lett Appl Microbiol. 2008;46:498–499.
  • Aune TEV, Aachmann FL. Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed. Appl Microbiol Biotechnol. 2010;85:1301–1313.
  • Williams JGK. Construction of specific mutants in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol. 1988;167:766–778.
  • Laemmli UK. Cleavage of structural proteins during the assembly of head of Bacteriophage T4. Nature. 1970;227:680–685.
  • Thompson JD, Higgins DG, Gibson TJ. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680.
  • Zhou W, Zhou T, Li M-X, et al. The Arabidopsis J-protein AtDjB1 facilitates thermotolerance by protecting cells against heat-induced oxidative damage. New Phytologist. 2012;194:364–378.
  • Al-Whaibi MH. Plant heat-shock proteins: a mini review. J King Saud Univ – Sci. 2011;23:139–150.
  • Itoh T, Matsuda H, Mori H. Phylogenetic analysis of the third Hsp70 homolog in Escherichia coli; a novel member of the Hsc66 subfamily and its possible co-chaperone. DNA Res. 1999;6:299–305.
  • Liberek K, Galitski TP, Zylicz M, et al. The DnaK chaperone modulates the heat shock response of Escherichia coli by binding to the σ32 transcription factor. Proc Natl Acad Sci USA. 1992;89:3516–3520.
  • Horváth I, Glatz A, Nakamoto H, et al. Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog Lipid Res. 2012;51:208–220.
  • Genevaux P, Georgopoulos C, Kelley WL. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol Microbiol. 2007;66:840–857.
  • Hinault MP, Cuendet AFH, Mattoo RUH, et al. Stable β-synuclein oligomers strongly inhibit chaperone activity of the Hsp70 system by weak interactions with J-domain co-chaperones. J Biol Chem. 2010;285:38173–38182.
  • Dörrich AK, Mitschke J, Siadat O, et al. Deletion of the Synechocystis sp. PCC 6803 kaiAB1C1 gene cluster causes impaired cell growth under light–dark conditions. Microbiology. 2014;160:2538–2550.
  • Mason CA, Dunner J, Indra P, et al. Heat-induced expression and chemically induced expression of the Escherichia coli stress protein HtpG are affected by the growth environment. Appl Environ Microbiol. 1999;3433–3440.
  • Paek KH, Walker GC. Escherichia coli dnaK null mutants are inviable at high temperature. J Bacteriol. 1987;169:283–290.
  • Nakamoto H. Molecular chaperones and stress tolerance in cyanobacteria. In: Srivastava AK, Rai AN, Neilan BA, editors. Stress biology of cyanobacteria: molecular mechanisms to cellular responses. Boca Raton (FL): CRC Press; 2013. p. 114–144.
  • Rajaram H, Chaurasia A, Apte S. Cyanobacterial heat-shock response: role and regulation of molecular chaperones. Microbiology. 2014;160:647–658.
  • Bracher A, Verghese J. GrpE, Hsp110/Grp170, HspBP1/Sil1 and BAG domain proteins: nucleotide exchange factors for Hsp70 molecular chaperones. Sub-cellular Biochem. 2015;78:1–33.