1,533
Views
20
CrossRef citations to date
0
Altmetric
Articles; Food Biotechnology

Modelling and optimization of Candida rugosa nanobioconjugates catalysed synthesis of methyl oleate by response surface methodology

, , , &
Pages 1113-1127 | Received 20 Jun 2015, Accepted 29 Jul 2015, Published online: 04 Sep 2015

References

  • Long X, Jian L, Lina Y, et al. Study on synthesis of methyl oleate catalyzed by ceric ammonium sulfate. Int J Sci Engine Res. 2013;4(9):1909–1911.
  • Aranda DAG, Santos RTP, Tapanes NCO, et al. Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids. Catal Lett. 2008;122:20–25.
  • Lotero E, Liu Y, Lopez DE, et al. Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res. 2005;44:5353–5363.
  • Pecnik S, Knez Z. Enzymatic fatty acid ester synthesis. J Am Oil Chem Soc. 1992;69:261–265.
  • Mahmood I, Ahmad I, Chen G, et al. A surfactant-coated lipase immobilized in magnetic nanoparticles for multicycle ethyl isovalerate enzymatic production. Biochem Eng J. 2013;73:72–79.
  • Iyer PV, Ananthanarayan L. Enzyme stability and stabilization-Aqueous and non-aqueous environment. Process Biochem. 2008;43:1019–1032.
  • Rios AP, Hernadenez-Fernandez FJ, Gomez D, et al. Understanding the chemical reaction and mass-transfer phenomena in a recirculating enzymatic membrane reactor for green ester synthesis in ionic liquid/supercritical carbon dioxide biphasic system. J Supercrit Fluids. 2007;43(2):303–309.
  • Szczesna-Antczak M, Kubiak A, Antczak T, et al. Enzymatic biodiesel synthesis - key factors affecting efficiency of the process. Renew Energy. 2009;34:1185–1194.
  • Sun WJ, Zhao HX, Cui FJ, et al. D-isoascorbylpalmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology. Chem Cent J. 2013;7:114.
  • Zhou X, Nie H, Yao Z, et al. Facile synthesis of nanospindle-like Cu2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing. Sens Actuators B Chem. 2012;168:1–7.
  • Khan AA, Alzohairy MA. Recent advanced and application of immobilized enzyme technologies: A review. Res J Bio Sci. 5. 2010;8:565–575.
  • Mateo C, Palomo JM, Fernandez-Lorente G, et al. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enz Microb Technol. 2007;40:1451–1463.
  • Mohamad NR, Huyop F, Aboul-Enein HF, et al. Response surface methodological approach for optimizing production of geranyl propionate catalysed by carbon nanotubes nanobioconjugates. Biotechnol Biotechnol Equip. 2015a;29(4):732–739.
  • Karra-Chaabouni M, Ghamgui H, Sofiane B, et al. Production of flavour esters by immobilized Staphylococcus simulans lipase in a solvent-free system. Process Biochem. 2006;41:1692–1698.
  • Zhao X, Qi F, Yuan C, et al. Lipase-catalyzed process for biodiesel production: Enzyme immobilization, process simulation and optimization. Renew Sust Energ Rev. 2015;44:182–197.
  • Zhang P, Henthorn DB. Synthesis of PEGylated single wall carbon nanotubes by a photoinitiated graft from polymerization. AIChE J. 2010;56:1610–1615.
  • Sinkuniene D, Bendikiene V, Juodka B. Response surface methodology-based optimization of lipase-catalyzed triolein hydrolysis in hexane. Romanian Biotechnol Lett. 2011;16(1):5891–5901.
  • Rodrigues RC, Ayub MAZ. Effects of the combined use of Thermomyces lanuginosus and Rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil. Process Biochem. 2011;46(3):682–688.
  • Basri M, Zaliha RR, Ebrahimpour A, et al. Comparison of estimation capabilities of response surface methodology (RSM) with artificial neural network (ANN) in lipase-catalyzed synthesis of palm-based wax ester. BMC Biotechnol. 2007;7:53–63.
  • Fan X, Wang X, Chen F. Biodiesel production from crude cottonseed oil: an optimization process using response surface methodology. TOEFJ. 2011;4:1–8.
  • Dwivedi G, Sharma MP. Application of Box–Behnken design in optimization of biodiesel yield from Pongamia oil and its stability analysis. Fuel. 2015;145:256–262.
  • Yudianti R, Onggo H, Sudirman, et al. Analysis of functional group sited on multi-wall carbon nanotube surface. TOMSJ. 2011;5:242–247.
  • Ye Y, Zhu-Ping H, Yong-Juan X, et al. Effect of support surface chemistry on lipase adsorption and activity. J Mol Catal B: Enzym. 2013;94:69–76.
  • Mohamad NR, Marzuki NHC, Buang NA, et al. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip. 2015b;29(2):205–220.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:258–254.
  • Radzi SM, Mustafa WAF, Othman SS, et al. Green synthesis of butyl acetate: a pineapple flavour via lipase catalyzed reaction. World Acad Sci Eng Technol. 2011;59:677–680.
  • Mohammad Fauzi AHM, Amin NAS. Optimization of oleic acid esterification catalyzed by ionic liquid for green biodiesel synthesis. Energ Convers Manage. 2013;76:818–827.
  • Li D, Xiaojing W, Kaili N, et al. Synthesis of wax esters by lipase-catalyzed Esterification with immobilized lipase from Candida sp. 99–125*. Chinese J Chem Eng. 2001;19(6):978–982.
  • Gong H, Kim ST, Lee JD, et al. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes. Appl Surf Sci. 2013;266:219–224.
  • Chen S, Shen W, Wu G, et al. A new approach to functionalization of single-walled carbon nanotube with both alkyl and carbonyl groups. Chem Phys Lett. 2005;402:302–317.
  • Lee SY, Park SJ. Hydrogen adsorption of acid-treated multi-walled carbon nanotubes at low temperature. Bull Korean Chem Soc. 2010;31:1596–1600
  • Prlainovic NZ, Bezbradica DI, Knezevic-Jugovic ZD, et al. Adsorption of lipase from Candida rugosa on multi walled carbon nanotubes. J Ind Eng Chem. 2013;19:279–285.
  • Raghavendra T, Basak A, Manocha LM, et al. Robust nanobioconjugates of Candida antarctica lipase B – Multiwalled carbon nanotubes: Characterization and application for multiple usages in non-aqueous biocatalysis. Bioresour Technol. 2013;140:103–110.
  • Osorio AG, Silveira ICL, Bueno VL, et al. H2SO4/HNO3/HCl - Functionalization and its effect on dispersion of carbon nanotubes in aqueous media. Appl Surf Sci. 2008;255(5):2485–2489.
  • Liu J, Rinzler AG, Dai H, et al. Fullerene pipes. Science. 1998;280:1253–1255.
  • Liu W, Yin P, Liu X, et al. Design of an effective bifunctional catalyst organotriphosphonic acid-functionalized ferric alginate (ATMP-FA) and optimization by Box–Behnken model for biodiesel esterification synthesis of oleic acid over ATMP-FA. Bioresour Technol. 2014;173:266–271.
  • Sultania M, Rai JS, Srivastava D. Process modeling, optimization and analysis of esterification reaction of cashew nut shell liquid (CNSL)-derived epoxy resin using response surface methodology. J Hazard Mater. 2011;185(2–3):1198–1204.
  • Jaliliannosrati H, Amin NAS, Talebian-Kiakalaieh A, et al. Microwave assisted biodiesel production from Jatropha curcas L. seed by two-step in situ process: Optimization using response surface methodology. Bioresour Technol. 2013;136:565–573.
  • Rahman MB, Chaibakhsh N, Basri M, Rahman RNZRA, Salleh AB, Mat Radzi S. Modelling and optimization of lipase-catalysed synthesis of dilauryladipate ester by response surface methodology. J Chem Technol Biotechnol. 2008;83:1534–1540.
  • Piexoto J. A property of well-formulated regression models. The Am Stats. 1990;44:26–30.
  • Nuthalapati V, Chidambaram R, Das Gupta N, et al. Optimization of growth medium using a statistical approach for the production of Plant Gallic acid from a newly isolated Aspergillustubigiensis NJA-1. J Pure Appl Biol. 1999;8:3313–3324.
  • Wahab RA, Basri M, Rahman RNZRA, et al. Enzymatic production of a solvent-free menthyl butyrate via response surface methodology catalyzed by a novel thermostable lipase from Geobacillus zalihae. Biotechnol Biotechnol Equip. 2014;28:1065–1072.
  • Pujari V, Chandra TS. Statistical optimization of medium components for improved synthesis of riboflavin by Eremotheciumashbyii. Bioprocess Eng. 2000;23:303–307.
  • Mohamad NR, Buang NA, Mahat NA, et al. A facile enzymatic synthesis of geranyl propionate by physically adsorbed Candida rugosa lipase onto multi-walled carbon nanotubes. Enzym Microb Tech. 2015;72:49–55.
  • Miranda M, Urioste D, Andrade Souza LT, et al. Assessment of the morphological, biochemical, and kinetic properties for Candida rugosa lipase immobilized on hydrous niobium oxide to be used in the biodiesel synthesis. Enzym Res. 2011;2011:216435.
  • Chaibakhsh N, Abdul Rahman MB, Abd-Aziz S, et al. Optimized lipase-catalysed synthesis of adipate ester in a solvent free system. J Ind Microbiol Biotechnol. 2009;36:1149–1155.
  • Kuo CH, Chen HH, Chen JH, et al. High yield of wax ester synthesized from cetyl alcohol and octanoic acid by Lipozyme RMIM and Novozyme 435. Intl J Mol Sci. 2012;13:11694–11704.
  • Salihu A, Alam MZ, Karim MIA, et al. Esterification for butyl butyrate formation using Candida cylindracea lipase produced from palm oil mill effluent supplemented medium. Arab J Chem. 2014;7(6):1159–1165.
  • Raghavendra T, Panchal N, Divecha J, et al. Biocatalytic synthesis of flavor ester ‘pentyl valerate’ using Candida rugosa lipase immobilized in microemulsion based organogels: effect of parameters and reusability. Bio Med Res Int. 2014;2014:353–845.
  • Martins AB, Graebin NG, Lorenzoni ASG, et al. Rapid and high yields of synthesis of butyl acetate catalyzed by Novozym 435: Reaction optimization by response surface methodology. Process Biochem. 2011;46:2311–2316.
  • Couto R, Vidinha P, Peres C, et al. Geranyl acetate synthesis in a packed-bed reactor catalyzed by Novozym in supercritical carbon dioxide and in supercritical ethane. Ind Eng Chem Res. 2011;50(4):1938–1946.
  • Feng Y, Zhao X, Lv F, et al. Optimization on Preparation Conditions of Salidroside Liposome and Its Immunological Activity on PCV-2 in Mice. J Evid Based Complementary Altern Med. 2015;2015:178128.
  • Wu CY, Liu Z, Hu Y, et al. Optimization on preparation conditions of Rehmannia glutinosa polysaccharide liposome and its immunological activity, Carbohydrate Polymers. 2014;104(1):118–126.
  • Pires-Cabral P, da Fonseca MMR, Ferreira-Dias S. Esterification activity and operational stability of Candida rugosa lipase immobilized in polyurethane foams in the production of ethyl butyrate. Biochem Eng J. 2010;48(2):246–252.
  • Yan JY, Yan YJ. Optimization for producing cell-bound lipase from Geotrichum sp. and synthesis of methyl oleate in microaqueous solvent. Appl Microbiol Biotechnol. 2008;78:431–439.
  • Chang SW, Huang M, Hsieh YH, et al. Simultaneous production of fatty acid methyl esters and diglycerides by four recombinant Candida rugosa lipase's isozymes. Food Chem. 2014;155:140–145.
  • Oliveira ACD, Watanabe FMF, Vargas JVC, et al. Production of methyl oleate with a lipase from an endophytic yeast isolated from castor leaves. Biocatal Agric Biotechnol. 2012;1:295–300.
  • Shu Q, Zhang Q, Xu G, et al. Preparation of biodiesel using s-MWCNT catalysts and the coupling of reaction and separation. Food Bioproducts Process. 2009;8(7):164–170.