772
Views
1
CrossRef citations to date
0
Altmetric
Articles; Pharmaceutical Biotechnology

In vitro antitumour activity, safety testing and subcellular distribution of two poly[oxyethylene(aminophosphonate-co-H-phosphonate)]s in Ehrlich ascites carcinoma and BALB/c 3T3 cell culture systems

, , , , , , & show all
Pages 192-196 | Received 17 Jul 2015, Accepted 26 Aug 2015, Published online: 08 Oct 2015

References

  • De Souza R, Zahedi P, Allen C, et al. Polymeric drug delivery systems for localized cancer chemoterapy. Drug Deliv. 2010;17:365–375.
  • Taghizadeh B, Taranejoo S, Monemian S, et al. Classification of stimuli-responsive polymers as anticancer drug delivery systems. Drug Deliv. 2014;22:145–155.
  • Troev KD. Polyphosphoesters chemistry and application: poly(alkylene H-phosphonate)s. Amsterdam: Elsevier; 2012. p. 1–122.
  • Luten J, Nostrum C, De Smedt S, et al. Biodegradable polymers as non-viral carriers for plasmid DNA delivery. J Control Release. 2008;126:97–110.
  • Zhao Z., Wang J, Mao H, et al. Polyphosphoesters in drug and gene delivery. Adv Drug Deliv Rev. 2003;55:483–499.
  • Steinbach T, Alexandrino E, Wurm F. Unsaturated poly(phosphoester)s via ring-opening metathesis polymerization. Polym Chem. 2013;4:3800–3806.
  • Bloemink M, Diederen J, Dorenbos J, et al. Calcium ions do accelerate the DNA binding of new antitumour-active platinum aminophosphonate complexes. Eur J Inorg Chem. 1999;10:1655–1657.
  • Kafarski P, Lejczak B. The biological activity of phosphono - and phosphinopeptides. In: Kukhar VP, Hudson HR, editors. Aminophosphonic and aminophosphinic acids: chemistry and biological activity. Chichester: Wiley; 2000. p. 407–435.
  • Kraicheva I, Tsacheva I, Vodenicharova E, et al. Synthesis, antiproliferative activity and genotoxicity of novel anthracene-containing aminophosphonates and a new anthracene-derived Schiff base. Bioorg Med Chem. 2012;20:117–24.
  • Sonar S, Sadaphal S, Labade V, et al. An efficient synthesis and antibacterial screening of novel oxazepine α-aminophosphonates by ultrasound approach. Phosphorus Sulfur. 2010;185:65–73.
  • Zhou J, Fan H, Song B, et al. Synthesis and antiviral activities of α-aminophosphonate derivatives containing a pyridazine moiety. Phosphorus Sulfur. 2010;168:81–87.
  • Bowden G, Garcia D, Peng Y, et al. Molecular pharmacology of the anthracycline drug 9,10-anthracenedicarboxaldehyde bis[(4,5-dihydro-1 H imidazol-2-yl)hydrazone] dihydrochloride. Cancer Res. 1982;42:2660–2665.
  • Bowden G, Roberts R, Alberts D, et al. Comparative molecular pharmacology in leukemic L1210 cells of the anthracene anticancer drugs mitoxantrone and bisantrene. Cancer Res. 1985;45:4915–4920.
  • Herrmann U, Tűmmler B, Maass G, et al. Anthracenoyl crown ethers and cryptands as fluorescent probes for solid-phase transitions of phosphatidylcholines: synthesis and phospholipid membrane studies. Biochemistry. 1984;23:4059–4067.
  • Martinez R, Chacon-Garcia L. The search of DNA-intercalators as antitumoural drugs: what it worked and what did not work. Curr Med Chem. 2005;12:127–151.
  • Nickel H, Schmidt P, Böhm K, et al. Synthesis, antiproliferative activity and inhibition of tubulin polymerization by 1,5- and 1,8-disubstituted 10H-anthracen-9-ones bearing a 10-benzylidene or 10-(2-oxo-2-phenylethylidene) moiety. Eur J Med Chem. 2010;45:3420–3438.
  • Prinz H, Ishii Y, Hirano T, et al. Novel benzylidene-9(10H)-anthracenones as highly active antimicrotubule agents. Synthesis, antiproliferative activity, and inhibition of tubulin polymerization. J Med Chem. 2003;46:3382–3394.
  • Kraicheva I, Vodenicharova E, Shenkov S, et al. Synthesis, characterization, antitumour activity and safety testing of novel polyphosphoesters bearing anthracene-derived aminophosphonate units. Bioorg Med Chem. 2014;22:874–882.
  • Ozaslan M, Karagoz1 I, Kilic I, et al. Ehrlich ascites carcinoma. Afr J Biotechnol. 2011;10:2375–2378.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.
  • Borenfreund E, Puerner J. Toxicity determined in vitro by morphological alteration and neutral red absorption. Toxicol Lett. 1985;24:119–124.
  • 3T3 Neutral Red Uptake (NRU) Phototoxicity Assay. Invittox protocol no. 78 [Internet]. [cited 2015 Jul 17]. Available from: http://ecvam-dbalm.jrc.ec.europa.eu.