1,146
Views
1
CrossRef citations to date
0
Altmetric
Article; Bioinformatics

TMO: time and memory optimized algorithm applicable for more accurate alignment of trinucleotide repeat disorders associated genes

, &
Pages 388-403 | Received 29 Jun 2015, Accepted 27 Oct 2015, Published online: 08 Feb 2016

References

  • Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970;48(3):443–453.
  • Smith T, Waterman M. Identification of common molecular subsequences. J Mol Biol. 1981;147(1):195–197.
  • Sellers PH. An algorithm for the distance between two finite sequences. J Combin Theory Ser A. 1974;16(2):253–258.
  • Sellers PH. The theory and computation of evolutionary distances: pattern recognition. J Algorithms. 1980;1(4):359–373.
  • Ulam SM. Some combinatorial problems studied experimentally on computing machines. In: Zaremba SK, editor. Applications of number theory to numerical analysis. San Diego, CA, Academic Press; 1972. p. 1–3.
  • Smith TF, Waterman MS, Fitch WM. Comparative biosequence metrics. J Mol Evol. 1981;18(1):38–46.
  • Goad WB, Kanehisa MI. Pattern recognition in nucleic acid sequences. I. A general method for finding local homologies and symmetries. Nucleic Acids Res. 1982;10(1):247–263.
  • Waterman MS, Eggert M. A new algorithm for best subsequence alignments with application to tRNA-rRNA comparisons. J Mol Biol. 1987;197(4):723–728.
  • Fitch WM, Smith TF. Optimal sequence alignments. Proc Natl Acad Sci U S A. 1983;80(5):1382–1386.
  • Gotoh O. An improved algorithm for matching biological sequences. J Mol Biol. 1982;162(3):705–708.
  • Gotoh O. Pattern matching of biological sequences with limited storage. CABIOS. 1987;3(1):17–20.
  • Hirschberg DS. A linear space algorithm for computing maximal common subsequences. Commun ACM. 1975;18(6):341–343.
  • Myers EW, Miller W. Optimal alignments in linear space. CABIOS. 1988;4(1):11–17.
  • Huang X, Hardison RC, Miller W. A space-efficient algorithm for local similarities. CABIOS. 1990;6(4):373–381.
  • Huang X, Miller W. A time-efficient, linear-space local similarity algorithm. Adv Appl Math. 1991;12(3):337–357.
  • Sankoff D, Kruskal JB. Time warps, string edits, and macromolecules: the theory and practice of sequence comparison. 1st ed. Boston, MA: Addison-Wesley; 1983. p. 382.
  • Fickett JW. Fast optimal alignment. Nucleic Acids Res. 1984;12(1):175–179.
  • Ukkonen E. Algorithms for approximate string matching. Inf Control. 1985;64(1):100–118.
  • Chao KM, Pearson WR, Miller W. Aligning two sequences within a specified diagonal band. CABIOS. 1992;8(5):481–487.
  • Lipman DJ, Pearson WR. Rapid and sensitive protein similarity searches. Science. 1985;227(4693):1435– 1441.
  • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410.
  • Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12(4):656–664.
  • Ma B, Tromp J, Li M. PatternHunter: faster and more sensitive homology search. Bioinformatics. 2002;18(3):440–445.
  • Califano A, Rigoutsos I. FLASH: A fast look-up algorithm for string homology. In: IEEE, editor. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition; 1993 Jun 15–17; New York, NY: IEEE Computer Society; 1993.
  • Noé L, Kucherov G. YASS: enhancing the sensitivity of DNA similarity search. Nucleic Acids Res. 2005;33(suppl 2):W540–W543.
  • Delcher AL, Kasif S, Fleischmann RD, et al. Alignment of whole genomes. Nucleic Acids Res. 1999;27(11):2369–2376.
  • Bray N, Dubchak I, Pachter L. AVID: A global alignment program. Genome Res. 2003;13(1):97–102.
  • Brudno M, Do CB, Cooper GM, et al. NISC comparative sequencing program. LAGAN and multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Res. 2003;13(4):721–731.
  • Brudno M, Morgenstern B. Fast and sensitive alignment of large genomic sequences. In: IEEE, editor. Bioinformatics Conference; 2002 Aug 14–16; Stanford, CA: IEEE Computer Society; 2002.
  • Shen SY, Yang J, Yao A, et al. Super pairwise alignment (SPA): an efficient approach to global alignment for homologous sequences. J Comput Biol. 2002;9(3):477–486.
  • Walker FO. Huntington's disease. The Lancet. 2007;369(9557):218–228.
  • Craufurd D, Thompson JC, Snowden JS. Behavioral changes in Huntington disease. Cogn Behav Neurol. 2001;14(4):219–226.
  • Orr HT, Chung MY, Banfi S, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet. 1993;4(3):221–226.
  • Nagafuchi S, Yanagisawa H, Sato K, et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet. 1994;6(1):14–18.
  • The European Nucleotide Archive [Internet]. Heidelberg: The European Molecular Biology; [cited 2015 June 20]. Available from: http://www.ebi.ac.uk/ena/.
  • EMBOSS Water online tool [Internet]. Heidelberg: The European Molecular Biology; [cited 2015 June 20]. Available from: http://www.ebi.ac.uk/Tools/psa/emboss_water/.
  • Ning Z, Cox AJ, Mullikin JC. SSAHA: a fast search method for large DNA databases. Genome Res. 2001;11(10):1725–1729.