1,449
Views
9
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Analysis of Hopi/Osr27 and Houba/Tos5/Osr13 retrotransposons in rice

, , &
Pages 213-218 | Received 14 Oct 2015, Accepted 20 Nov 2015, Published online: 20 Jan 2016

References

  • Wicker T, Sabot F, Hua-Van A, et al. A unified classification system for eukaryotic transposable elements. Nat Rev Genet. 2007;8:973–982.
  • Bennetzen JL, SanMiguel P, Chen M, et al. Grass genomes. P Natl Acad Sci USA. 1998;95:1975–1978.
  • Meyers BC, Tingey SV, Morgante M. Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res. 2001;11:1660–1676.
  • Baucom RS, Estill JC, Chaparro C, et al. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. Plos Genet. 2009;5:1–13.
  • The International Barley Genome Sequencing Consortium. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491:711–717.
  • Zhang X, Wessler SR. Genome-wide comparative analysis of the transposable elements in the related species Arabidopsis thaliana and Brassica oleracea. P Natl Acad Sci USA. 2004;101:5589–5594.
  • Hill P, Burford D, Martin DMA, et al. Retrotransposon populations of Vicia species with varying genome size. Mol Genet Genomics. 2005;273:371–381.
  • Roy NS, Choi JY, Lee SI, et al. Erratum to: marker utility of transposable elements for plant genetics, breeding, and ecology: a review. Genes Genomics. 2015;37:487.
  • Jurka J, Kapitonov VV, Pavlicek A, et al. Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005;110:462–467.
  • Du J, Grant D, Tian Z, et al. SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics. 2010;11:113.
  • Schnable PS, Ware D, Fulton RS, et al. The B73 maize genome: complexity, diversity, and dynamics. Science. 2009;326:1112–1115.
  • International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature. 2005;436:793–800.
  • Tian Z, Rizzon C, Du J, et al. Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons? Genome Res. 2009;19:2221–2230.
  • Oliver KR, Greene WK. Transposable elements: powerful facilitators of evolution. BioEssays. 2009;31:703–714.
  • Fedoroff NV. The discovery of transposition. In: Fedoroff NV, editor. Plant transposons and genome dynamics in evolution. Ames (IA): Wiley-Blackwell Inc; 2013. p. 3–14.
  • Fedoroff NV, Bennetzen JL. Transposon, genomic shock, and genome expansion. In: Fedoroff NV, editor. Plant transposons and genome dynamics in evolution. Ames (IA): Wiley-Blackwell Inc; 2013. p. 181–201.
  • Oliver KR, McComb JA, Greene WK. Transposable elements: powerful contributors to angiosperm evolution and diversity. Genome Biol Evol. 2013;5:1886–1901.
  • Lee SI, Kim NS. Transposable elements and genome size variations in plants. Genomics Inform. 2014;12:87–97.
  • Wessler SR, Bureau TE, White SE. LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev. 1995;5:814–821.
  • Kejnovsky E, Hawkins JS, Feschotte C. Plant transposable elements: biology and evolution. In: Wendel JF, Greilhuber J, Dolezel J, Leitch IJ, editors. Plant genome diversity. Vol. 1. Wien: Springer Verlag; 2012. p. 17–34.
  • Fedoroff NV. Presidential address. Transposable elements, epigenetics, and genome evolution. Science. 2012;338:758–767.
  • Piegu B, Guyot R, Picault N, et al. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 2006;16:1262–1269.
  • Beló A, Nobuta K, Venu RC, et al. Transposable element regulation in rice and Arabidopsis: diverse patterns of active expression and siRNA-mediated silencing. Trop Plant Biol. 2008;1:72–84.
  • Ma J, Devos KM, Bennetzen JL. Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res. 2004;14:860–869.
  • Du J, Tian Z, Hans CS, et al. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J. 2010;63:584–598.
  • Smýkal P, Bacova-Kerteszova N, Kalendar R, et al. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet. 2011;122:1385–1397.
  • Bayram E, Yilmaz S, Hamat-Mecbur H, et al. Nikita retrotransposon movements in callus cultures of barley (Hordeum vulgare L.). POJ. 2012;5:211–215.
  • Marakli S, Yilmaz S, Gozukirmizi N. BARE1 and BAGY2 retrotransposon movements and expression analyses in developing barley seedlings. Biotechnol Biotechnol Equip. 2012;26:3451–3456.
  • Gozukirmizi N, Yilmaz S, Marakli S, et al. Retrotransposon-based molecular markers; tools for variation analysis in plants. In: Tashki-Ajdukovic K, editor. Applications of molecular markers in plant genome analysis and breeding. Ontoria: Research Signpost/Transworld Research Network; 2015. p. 19–45.
  • Waugh R, McLean K, Flavell AJ, et al. Genetic distribution of Bare-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet. 1997;253(6):687–694.
  • Alavi-Kia SS, Mohammadi SA, Aharizad S, et al. Analysis of genetic diversity and phylogenetic relationships in Crocus genus of Iran using inter-retrotransposon amplified polymorphism. Biotechnol Biotechnol Equip. 2008;22:795–800.
  • Baumel A, Ainouche M, Kalendar R, et al. Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C.E. Hubbard (Poaceae). Mol Biol Evol. 2002;19(8):1218–1227.
  • Saeidi H, Rahiminejad MR, Heslop-Harrison JS. Retroelement insertional polymorphisms, diversity and phylogeography within diploid, D-genome Aegilops tauschii (Triticeae, Poaceae) Sub-taxa in Iran. Ann Bot. 2008;101:855–861.
  • Belyayev A, Kalendar R, Brodsky L, et al. Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mobile DNA. 2010;1:1–16.
  • Gozukirmizi N. Retrotransposon based markers and their applications in barley (Hordeum vulgare L.cvs.) tissue culture. The 5th International Symposium on Sustainable Development. Proceedings; 2014 May 15–18; Sarajevo: International Burch University; 2014.
  • Kalendar R, Flavell AJ, Ellis THN, et al. Analysis of plant diversity with retrotransposon-based molecular markers. Heredity. 2011;106:520–530.
  • Bonchev G, Parisod C. Transposable elements and microevolutionary changes in natural populations. Mol Ecol Resour. 2013;13:765–775.
  • Poczai P, Varga I, Laos M, et al. Advances in plant gene-targeted and functional markers: a review. Plant Methods. 2013;9:6.
  • Kalendar R, Grob T, Regina M, et al. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet. 1999;98:704–711.
  • Branco CJS, Vieira EA, Malone G, et al. IRAP and REMAP assessment of genetic similarity in rice. J Appl Genet. 2007;48:107–113.
  • Fan F, Cui B, Zhang T, et al. LTR-retrotransposon activation, IRAP marker development and its potential in genetic diversity assessment of masson pine (Linus massoniana). Tree Genet Genomes. 2014;10:2013–2222.
  • Vitte C, Panaud O, Quesneville H. LTR retrotransposons in rice (Oryza sativa L.): recent burst amplifications followed by rapid DNA loss. BMC Genomics. 2007;8:218.
  • Pervaiz ZH, Turi NA, Khaliq I, et al. Methodology: a modified method for high-quality DNA extraction for molecular analysis in cereal plants. Genet Mol Res. 2011;10:1669–1673.
  • Jaccard P. Nouvelles recherches sur la distribution florale [New research on the floral distribution]. Bul Soc Vaudoise Sci Nat. 1908;44:223–270.
  • Hamad-Mecbur H, Yilmaz S, Temel A, et al. Effects of epirubicin on barley seedlings. Toxicol Ind Health. 2014;30:52–59.
  • Yilmaz S, Marakli S, Gozukirmizi N. BAGY2 retrotransposon analyses in barley calli cultures and regenerated plantlets. Biochem Genet. 2014;52:233–244.
  • Vukich M, Schulman AH, Giordani T, et al. Genetic variability in sunflower (Helianthus annuus L.) and in the Helianthus genus as assessed by retrotransposon-based molecular markers. Theor Appl Genet. 2009;119:1027–1038.
  • Cakmak B, Marakli S, Gozukirmizi N. SIRE1 retrotransposons in barley (Hordeum vulgare L.). Russ J Genet. 2015;51:661–672.
  • O'Donnell K, Burns KH. Mobilizing diversity: transposable element insertions in genetic variation and disease. Mobile DNA. 2010;1:21.