1,511
Views
7
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Distribution and genetic chemotyping of Fusarium graminearum and Fusarium culmorum populations in wheat fields in the eastern Mediterranean region of Turkey

&
Pages 254-260 | Received 11 Aug 2015, Accepted 25 Nov 2015, Published online: 22 Jan 2016

References

  • FAOSTAT. Food and Agricultural Organization of the United Nations. Rome, Italy: FAO; 2014 [ cited 2015 Jul 10]. Available from: http://faostat.fao.org/site/567/default.aspx#ancor.
  • Parry DW, Jenkinson P, McLeod L. Fusarium ear blight (scab) in small grains – a review. Plant Pathol. 1995;44:207–238.
  • Jennings P, Turner JA. Towards the prediction of Fusarium ear blight epidemics in the UK – the role of humidity in disease development. Proceedings of the Brighton Crop Protection Conference: Pests and Diseases. Farnham, UK: BCPC Publications; 1996. p.233–238.
  • Turner JA, Jennings P. The effect of increasing humidity on Fusarium ear blight and grain quality. Proceedings of the Fifth European Fusarium Seminar, Szeged. Cereal Res Commun. 1997;25:825–826.
  • Jackowiak H, Packa D, Wiwart M, et al. Scanning electron microscopy of Fusarium damaged kernels of spring wheat. Int J Food Microbiol. 2005;98:113–123.
  • Rotter BA, Prelusky DB, Pestka JJ. Toxicology of deoxynivalenol (vomitoxin). J Toxicol Environ Health. 1996;48:1–34.
  • Placinta CM, D'Mello JPF, McDonald AMC. A review of world wide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim Feed Sci Tech. 1999;78:21–37.
  • Hye-Seon K, Lee T, Dawlatana M, et al. Polymorphism of trichothecene biosynthesis genes in deoxynivalenol- and nivalenol-producing Fusarium graminearum isolates. Mycol Res. 2003;107:190–197.
  • Kimura M, Kaneko I, Komiyama M, et al. Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. J Biol Chem. 1998;273:1654–1661.
  • Ryu JC, Ohtsubo K, Izumiyama N, et al. The acute and chronic toxicities of nivalenol in mice. Fundam Appl Toxicol. 1988;11:38–47.
  • Mirocha C, Abbas H, Windels C, et al. Variation in deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxy- nivalenol, and zearalenone production by Fusarium graminearum isolates. Appl Environ Microbiol. 1989;55:1315–1316.
  • Puri KD, Zhong S. The 3ADON population of Fusarium graminearum found in North Dakota is more aggressive and produces a higher level of DON than the prevalent 15ADON population in spring wheat. Phytopathology. 2010;100:1007–1014.
  • Desjardins A, Manadhar H, Plattner R, et al. Occurrence of Fusarium species and mycotoxins in Nepalese maize and wheat and the effect of traditional processing methods on mycotoxin levels. J Agr Food Chem. 2000;48:1377–1383.
  • Jennings P, Coates ME, Walsh K, et al. Determination of deoxynivalenol and nivalenol-producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Plant Pathol. 2004;53:643–652.
  • FAO. Worldwide regulations for mycotoxins in food and feed in 2003. FAO Food and Nutrition Paper 81. Rome, Italy: Food and Agriculture Organization of the United Nations; 2004. p. 1–180.
  • Verstraete F. European Union legislation on mycotoxins in food and feed: overview of the decision-making process and recent and future development. In: Leslie JF, Bandyopadhyay R, Visconti A, editors. Mycotoxins. detection methods, management, public health and agricultural trade. Wallingford (CT): CABI; 2008. p. 77–99.
  • EU. Commission Regulation (EC) No 856 ⁄ 2005 of 6 June 2005 amending Regulation (EC) No 466 ⁄ 2001 as regards Fusarium toxins. Official J Eur Union. 2005;L143:3–8.
  • Sugiura Y, Watanabe Y, Tanaka T, et al. Occurrence of Gibberella zeae strains that produce both nivalenol and deoxynivalenol. Appl Environ Microbiol. 1990;56:3047–3051.
  • Miller JD, Greenhalgh R, Wang YZ, et al. Trichothecene chemotypes of three Fusarium species. Mycologia. 1991;83:121–130.
  • Muthomi JW, Schutze A, Dehne HW, et al. Characterisation of Fusarium culmorum isolates by mycotoxin production and aggressiveness to winter wheat. J Plant Dis Prot. 2000;107:113–123.
  • Jian-Hua W, He-Ping L, Jing-Bo Z, et al. Development of a generic PCR detection of 3-acetyldeoxynivalenol-, 15-acetyldeoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum. Int J Mol Sci. 2008;9:2495–2504.
  • Chandler EA, Simpson DR, Thomsett MA, et al. Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterization of chemotypes of Fusarium graminearum, Fusarium culmorum and Fusarium cerealis. Physiol Mol Plant Pathol. 2003;62:355–367.
  • Shen CM, Hu YC, Sun HY, et al. Geographic distribution of trichothecene chemotypes of the Fusarium graminearum species complex in major winter wheat production areas of China. Plant Dis. 2012;96:1172–1178.
  • Mert-Türk F, Gencer R. Distribution of the 3-AcDON, 15-AcDON and NIV chemotypes of Fusarium culmorum in the North-West of Turkey. Plant Prot Sci. 2013;49: 57–64.
  • Wang JH, Li HP, Qu B, et al. Development of a generic PCR detection of 3-acetyldeoxy-nivalenol-, 15-acetyldeoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum clade. Int J Mol Sci. 2008;9:2495–2504.
  • Yörük E, Albayrak G. Chemotyping of Fusarium graminearum and F. culmorum isolates from Turkey by PCR assay. Mycopathologia. 2012;173:53–61.
  • Doohan FM, Parry DW, Nicholson P. Fusarium ear blight of wheat: the use of quantitative PCR and visual disease assessment in studies of disease control. Plant Pathol. 1999;48:209–217.
  • Schnerr H, Niessen L, Vogel RF. Real time detection of the tri5 gene in Fusarium species by LightCycler–PCR using SYBR Green I for continuous fluorescence monitoring. Int J Food Microbiol. 2001;71:53–61.
  • Edwards SG, Pirgozliev SR, Hare MC, et al. Quantification of trichothecene-producing Fusarium species in harvested grain by competitive PCR to determine efficacies of fungicides against Fusarium head blight of winter wheat. Appl Environ Microbiol. 2001;67:1575–5780.
  • Leslie JF, Summerell BA. The Fusarium laboratory manual. Oxford: Blackwell Publishing Ltd; 2006. p.158–159.
  • Nirenberg HA. A simplified method for identifying Fusarium spp. occurring on wheat. Can J Bot. 1981;59:1599–1609.
  • Nelson PE, Toussoun TA, Marasas WFO. Fusarium species. An illustrated manual for identification. University Park: The Pennsylvania State University Press; 1983.
  • Nicholson P, Simpson DR, Weston G, et al. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol Mol Plant Pathol. 1998;53:17–37.
  • Tizaki MA, Sabbagh SK. Detection of 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol and nivalenol-chemotypes of Fusarium graminearum from Iran using specific PCR assays. Plant Knowledge J. 2013;2:38–42.
  • Turner JA, Jennings P, Nicholson P. Investigation of Fusarium infection and mycotoxin levels in harvested wheat grain. London: Home Grown Cereals Authority; 1999. ( Project Report no. 207.)
  • Yörük E, Gazdagli A, Albayrak G. Class B trichothecene chemotyping in Fusarium species by PCR assay. Genetika. 2014;46:661–669.
  • Gale LR, Ward TJ, Balmas V, et al. Population subdivision of Fusarium graminearum sensu stricto in the upper Midwestern United States. Phytopathology. 2007;97:1434–1439.
  • Bakan B, Pinson L, Cahagnier B, et al. Toxigenic potential of Fusarium culmorum strains isolated from French wheat. Food Addit Contam. 2001;18:998–1003.
  • Reynoso MM, Ramirez ML, Torres AM, et al. Trichothecene genotypes and chemotypes in Fusarium graminearum strains isolated from wheat in Argentina. Int J Food Microbiol. 2011;145:444–448.
  • Yli-Mattila T, Paavanen-Huhtala S, Jestoi M, et al. Real-time PCR detection and quantification of Fusarium poae, F. graminearum, F. sporotrichioides and F. langsethiae in cereal grains in Finland and Russia. Arch Phytopathol Plant Prot. 2008;41:243–260.
  • Pasquali M, Giraud F, Brochot C, et al. Genetic Fusarium chemotyping as a useful tool for predicting nivalenol contamination in winter wheat. Int J Food Microbiol. 2010;137:246–253.
  • Alvarez CL, Azcarate MP, Pinto VF. Toxigenic potential of Fusarium graminearum sensu stricto isolates from wheat in Argentina. Int J Food Microbiol. 2009;135:131–135.
  • Miedaner T, Reinbrecht C, Schilling AG. Association among aggressiveness, fungal colonization, and mycotoxin production of 26 isolates of Fusarium graminearum in winter rye head blight. J Plant Dis Prot. 2000;107:124–234.
  • Jennings P, Coates ME, Turner JA, et al. Determination of deoxynivalenol and nivalenol chemotypes of Fusarium culmorum isolates from England and Wales by PCR assay. Plant Pathol. 2004;53:182–190.
  • Quarta A, Mita G, Haidukowski M, et al. Assessment of trichothecene chemotypes of Fusarium culmorum occurring in Europe. Food Addit Contam. 2005;22:309–315.
  • Stepień Ł, Popiel D, Koczyk G, et al. Wheat-infecting Fusarium species in Poland – their chemotypes and frequencies revealed by PCR assay. J Appl Genet. 2008;49:433–441.
  • Quarta A, Mita G, Haidukowski M, et al. Multiplex PCR assay for the identification of nivalenol, 3-, and 15-acetyl deoxynivalenol chemotypes in Fusarium. FEMS Microbiol Lett. 2006;259:7–13.
  • Von der Ohe C, Gauthier V, Tamburic-Ilincic L, et al. A comparison of aggressiveness and deoxynivalenol production between Canadian Fusarium graminearum isolates with 3-acetyl and 15-acetyldeoxynivalenol chemotypes in field-grown spring wheat. Eur J Plant Pathol. 2010;127:407–417.