2,036
Views
8
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Identification and characterization of a novel abiotic stress responsive sulphotransferase gene (OsSOT9) from rice

, , , , , , , , & show all
Pages 227-235 | Received 02 Aug 2015, Accepted 22 Dec 2015, Published online: 09 Feb 2016

References

  • Jain M, Nijhawan A, Arora R, et al. F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol. 2007;143(4):1467–1483.
  • Liu SB, Cao XF, Liao YR, et al. Identification and characterization of a novel abiotic stress responsive ATPase gene from rice. Plant Omics. 2015;8(2):169–177.
  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 2009;149(1):88–95.
  • Chen RJ, Qiu JD, Jiang YY, et al. Isolation of a novel MYB transcription factor OsMyb1R from rice and analysis of the response of this gene to abiotic stresses. Afr J Biotechnol. 2012;11(16):3731–3737.
  • Yokoi S, Bressan RA, Hasegawa PM. Salt stress tolerance of plants. JIRCAS Work Rep. 2002;23(1):25–33.
  • Beck EH, Fettig S, Knake C, et al. Specific and unspecific responses of plants to cold and drought stress. J Biosci. 2007;32(3):501–510.
  • Duan ZQ, Bai L, Zhao ZG, et al. Drought-stimulated activity of plasma membrane nicotinamide adenine dinucleotide phosphate oxidase and its catalytic properties in rice. J Integr Plant Biol. 2009;51(12):1104–1115.
  • Baek D, Pathange P, Chung JS, et al. A stress-inducible sulphotransferase sulphonates salicylic acid and confers pathogen resistance in Arabidopsis. Plant Cell Environ. 2010;33(8):1383–1392.
  • Strott CA. Sulfonation and molecular action. Endocr Rev. 2002;23(5):703–732.
  • Hernández-Sebastià C, Varin L, Marsolais F. Sulfotransferases from plants, algae and phototrophic bacteria, Chapter 6. In: Hell R, Dahl C, Knaff D, and Leustek T, editors. Sulfur metabolism in phototrophic organism: Advances in photosynthesis and respiration, vol 27. Dordrecht: Springer; 2008. p. 111–130.
  • Klein M, Papenbrock J. The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species. J Exp Bot. 2004;55(404):1809–1820.
  • Klein M, Papenbrock J. Sulfur assimilation and abiotic stress in plants. Berlin: Springer; 2008. Chapter 7, Sulfotransferases and their role in glucosinolate biosynthesis; p. 149–166.
  • Gidda SK, Varin L. Biochemical and molecular characterization of flavonoid 7-sulfotransferase from Arabidopsis thaliana. Plant Physio Biochem. 2006;44(11–12):628–636.
  • Hempel F, Bozarth A, Sommer MS, et al. Transport of nuclear-encoded proteins into secondarily evolved plastids. Biol Chem. 2007;388(9):899–906.
  • Nowell S, Falany CN. Pharmacogenetics of human cytosolic sulfotransferases. Oncogene. 2006;25(11):1673–1678.
  • Chen RJ, Jiang YY, Dong JL, et al. Genome-wide analysis and environmental response profiling of SOT family genes in rice (Oryza sativa). Genes Genomics. 2012;34(5):549–560.
  • Ananvoranich S, Varin L, Gulick P, et al. Cloning and regulation of flavonol 3-sulfotransferase in cell-suspension cultures of Flaveria bidentis. Plant Physiol. 1994;106(2):485–491.
  • Marsolais F, Gidda SK, Boyd J, et al. Chapter Fourteen Plant soluble sulfotransferases: structural and functional similarity with mammalian enzymes. Recent Adv Phytochem. 2000;34:433–456.
  • Varin L, Chamberland H, Lafontaine JG, et al. The enzyme involved in sulfation of the turgorin, gallic acid 4‐O‐(β‐D‐glucopyranosyl‐6′‐sulfate) is pulvini‐localized in Mimosa pudica. Plant J. 1997;12(4):831–837.
  • Yang HP, Matsubayashi Y, Nakamura K, et al. Oryza sativa PSK gene encodes a precursor of phytosulfokine-α, a sulfated peptide growth factor found in plants. Proc Natl Acad Sci. 1999;96(23):13560–13565.
  • Hirschmann F, Krause F, Papenbrock J. The multi-protein family of sulfotransferases in plants: composition, occurrence, substrate specificity, and functions. Front Plant Sci. 2014;5:556.
  • Varin L, DeLuca V, Ibrahim RK, et al. Molecular characterization of two plant flavonol sulfotransferases. Proc Natl Acad Sci. 1992;89(4):1286–1290.
  • Varin L, Marsolais F, Brisson N. Chimeric flavonol sulfotransferases define a domain responsible for substrate and position specificities. J Biol Chem. 1995;270(21):12498–12502.
  • Gidda SK, Miersch O, Levitin A, et al. Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J Biol Chem. 2003;278(20):17895–17900.
  • Lacomme C, Roby D. Molecular cloning of a sulfotransferase in Arabidopsis thaliana and regulation during development and in response to infection with pathogenic bacteria. Plant Mol Biol. 1996;30(5):995–1008.
  • Piotrowski M, Schemenewitz A, Lopukhina A, et al. Desulfoglucosinolate sulfotransferases from Arabidopsis thaliana catalyze the final step in the biosynthesis of the glucosinolate core structure. J Biol Chem. 2004;279(49):50717–50725.
  • Rouleau M, Marsolais F, Richard M, et al. Inactivation of brassinosteroid biological activity by a salicylate-inducible steroid sulfotransferase from Brassica napus. J Biol Chem. 1999;274(30):20925–20930.
  • Michèle R, Frédéric M, Martine R, et al. Inactivation of brassinosteroid biological activity. J Biol Chem. 1999;274:20925–20930.
  • Xu M, Chen RJ, Rocha P, et al. Expression and cloning of a novel stress responsive gene (OsMSR1) in rice. Acta Agronomica Sinica 2008;34(10):1712–1718.
  • Dong JL, Jiang YY, Chen RJ, et al. Isolation of a novel xyloglucan endotransglucosylase (OsXET9) gene from rice and analysis of the response of this gene to abiotic stresses. Afr J Biotechnol. 2011;10(76):17424–17434.
  • Jiang YY, Dong JL, Chen RJ, et al. Isolation of a novel PP2C gene from rice and its response to abiotic stresses. Afr J Biotechnol. 2011;10(37):7143–7154.
  • Chen RJ, Dong JL, Liu SB, et al. Isolation of a novel abscisic acid stress ripening (OsASR) gene from rice and analysis of the response of this gene to abiotic stresses. Afr J Biotechnol. 2012;11(74):13873–13881.
  • Zhao Y, Wang JW. Characterization of duck enteritis virus US6, US7 and US8 gene. Intervirology. 2010;53(3):141–145.
  • Hashiguchi T, Sakakibara Y, Hara Y, et al. Identification and characterization of a novel kaempferol sulfotransferase from Arabidopsis thaliana. Biochem Biophys Res Commun. 2013;434(4):829–835.
  • Zang YX, Kim HU, Kim JA, et al. Genome‐wide identification of glucosinolate synthesis genes in Brassica rapa. FEBS J. 2009;276(13):3559–3574.
  • Wang H, Wu J, Sun S, et al. Glucosinolate biosynthetic genes in Brassica rapa. Gene. 2011;487(2):135–142.
  • Labonne JJ, Goultiaeva A, Shore JS. High-resolution mapping of the S-locus in Turnera leads to the discovery of three genes tightly associated with the S-alleles. Mol Genet Genomics. 2009;281(6):673–685.
  • Hanai H, Nakayama D, Yang H, et al. Existence of a plant tyrosylprotein sulfotransferase: novel plant enzyme catalyzing tyrosine O-sulfation of preprophytosulfokine variants in vitro. FEBS Lett. 2000;470(2):97–101.
  • Komori R, Amano Y, Ogawa-Ohnishi M, et al. Identification of tyrosylprotein sulfotransferase in Arabidopsis. Proc Natl Acad Sci. 2009;106(35):15067–15072.
  • Bauer M, Dietrich C, Nowak K, et al. Intracellular localization of Arabidopsis sulfurtransferases. Plant Physiol. 2004;135(2):916–926.
  • Nowak K, Luniak N, Meyer S, et al. Fluorescent proteins in poplar: a useful tool to study promoter function and protein localization. Plant Biol. 2004;6(1):65–73.