8,636
Views
14
CrossRef citations to date
0
Altmetric
Article; Food Biotechnology

Acetate metabolism of Saccharomyces cerevisiae at different temperatures during lychee wine fermentation

, , &
Pages 512-520 | Received 29 Sep 2015, Accepted 13 Jan 2016, Published online: 08 Feb 2016

References

  • Ong PKC, Acree TE. Similarities in the aroma chemistry of Gewürztraminer variety wines and lychee (Litchi chinesis Sonn.) fruit. J Agric Food Chem. 1999;47:665–670.
  • Alves JA, Lima LCD, Dias DR, et al. Effects of spontaneous and inoculated fermentation on the volatile profile of lychee (Litchi chinensis Sonn.) fermented beverages. Int J Food Sci Technol. 2010;45:2358–2365.
  • Chen D, Chia JY, Liu SQ. Impact of addition of aromatic amino acids on non-volatile and volatile compounds in lychee wine fermented with Saccharomyces cerevisiae MERIT.ferm. Int J Food Microbiol. 2014;170:12–20.
  • Vasserot Y, Mornet F, Jeandet P. Acetic acid removal by Saccharomyces cerevisiae during fermentation in oenological conditions. Metabolic consequences. Food Chem. 2010;119:1220–1223.
  • Jost P, Piendl A. Technological influences on the formation of acetate during fermentation. Am Soc Brew Chem. 1975;34:31–37.
  • Alves JA, Lima LCD, Nunes CA, et al. Chemical, physical–chemical, and sensory characteristics of lychee (Litchi chinensis Sonn) wines. J Food Sci. 2011;76(5):330–336.
  • Ribéreau-Gayon P, Glories Y, Maujean A, et al. Handbook of enology. 2nd ed. Vol. 2, Alcohols and other volatile compounds. The chemistry of winestabilization and treatments. Chichester: Wiley; 2006. p. 51–64.
  • Cordente AG, Cordero-Bueso G, Pretorius IS, et al. Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation. FEMS Yeast Res. 2013;13(1):62–73.
  • Fleet GH, Heard GM. Yeasts-growth during fermentation. In: Fleet GH, editor. Wine microbiology and biotechnology. Chur: Harwood Academic Publishers; 1993. p. 42–43.
  • Casal M, Paiva S, Andrade RP, et al. The lactate-proton symport of Saccharomyces cerevisiae is encoded by JEN1. J Bacteriol. 1999;181:2620–2623.
  • Mollapour M, Shepherd A, Piper PW. Presence of the Fps1 paquaglyceroporin channel is essential for Hog1p activation, but suppresses Slt2(Mpk1)p activation, with acetic acid stress of yeast. Microbiology. 2009;155:3304–3311.
  • Hohmann, S. Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Lett. 2009;583:4025–4029.
  • Giannattasio S, Guaragnella N, Ždralević M, et al. Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front Microbiol. 2013;4: 33-1--7. doi: 10.3389/fmicb.2013.00033.
  • Entian KD, Barnett J. Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem Sci. 1992;17:506–510.
  • Fugelsang KC, Edwards CG. Wine microbiology. Practical applications and procedures. 2nd ed. New York: Springer Science Business Media; 2007.
  • Vilela-Moura A, Schuller D, Mendes-Faia A, et al. Reduction of volatile acidity of wines by selected yeast strains. Appl Microbiol Biotechnol. 2008;80:881–890.
  • Vilela-Moura A, Schuller D, Mendes-Faia A, et al. The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines. Appl Microbiol Biotechnol. 2011;89:271–280.
  • Thomas S, Davenport RR. Zygosaccharomyces bailii, a profile of characteristics and spoilage activities. Food Microbiol. 1985;2:157–169.
  • Pampulha MA, Loureiro-Dias MC. Combined effect of acetic acid, pH and ethanol on intracellular pH of fermenting yeast. Appl Microbiol Biotechnol. 1989;31:547–550.
  • Pinto I, Cardoso H, Leão C, et al. High enthalpy and low enthalpy death in Saccharomyces cerevisiae induced by acetic acid. Biotechnol Bioeng. 1989;33:1350–1352.
  • Rasmussen JE, Schultz E, Snyder RE, et al. Acetic acid as a causative agent in producing stuck fermentations. Am J Enol Vitic. 1995;46:278–280.
  • Edwards CG, Reynolds AF, Rodriguez AV, et al. Implication of acetic acid in the induction of slow/stuck grape juice fermentations and inhibition of yeast by Lactobacillus sp. Am J Enol Vitic. 1999;50(2):204–210.
  • Eglinton JM, Henschke PA. Restarting incomplete fermentations: the effect of high concentrations of acetic acid. Aust J Grape Wine Res. 1999;52:71–78.
  • Kostov G, Popova S, Gochev V, et al. Modeling of batch alcohol fermentation with free and immobilized yeasts Saccharomyces cerevisiae 46 EVD. Biotechnol Biotechnol Equip. 2012;26(3):3021–3030.
  • Postma E, Verduyn C, Scheffers WA, et al. Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Environ Microbiol. 1989;55(2):468–477.
  • Oh EJ, Bae YH, Kim, KH, et al. Effects of overexpression of acetaldehyde dehydrogenase6 and acetyl-CoA synthetase1 on xylitol production in recombinant Saccharomyces cerevisiae. Biocatal Agri Biotech. 2012;1:15–19.
  • Marco AB, Gubbels PJ, Kortland CJ, et al. The two acetyl-coenzyme a synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biochem. 1996;271(46):28953–28959.
  • Dixon GH, Kornberg HL. Assay methods for key enzymes of the glyoxylate cycle. Biochem J. 1959;72:195–198.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Nissen TL, Anderlund M, Nielsen J, et al. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast. 2001;18(1):19–32.
  • Casey GP, Ingledew WM. Ethanol tolerance in yeasts. CRC Crit Rev Microb. 1986;13(3):219–280.
  • Torija MJ, Rozès N, Poblet M, et al. Effects of fermentation temperature on the strain population of Saccharomyces cerevisiae. Int J Food Microbiol. 2003;80:47–53.
  • Nagodawithana TW, Castellano C, Steinkraus KH. Effect of dissolved oxygen, temperature, initial cell count and sugar concentration on the viability of Saccharomyces cerevisiae in rapid fermentations. Appl Microbiol. 1974;28:383–391.
  • Woo JM, Yang KM, Kim SU, et al. High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions. Appl Microbiol Biotechnol. 2014;98:6085–6094.
  • Lucero P, Peñalver E, Moreno E, et al. Internaltrehalose protects endocytosis from inhibition by ethanol in Saccharomyces cerevisiae. Appl Environ Microbiol. 2000;66(10):4456–4461.
  • Alexandre H, Rousseaux I, Charpentier C. Ethanol adaptation mechanisms in Saccharomyces cerevisiae. Biotechnol Appl Biochem. 1994;20:173–183.
  • Pampulha ME, Loureiro-Dias MC. Energetics of the effect of acetic acid on growth of Saccharomyces cerevisiae. FEMS Microbiol Lett. 2000;184(1):69–72.
  • Ugliano M, Henschke P. Yeasts and wine flavor. In: Moreno-Arribas MV, Polo MC, editors. Wine chemistry and biochemistry. New York: Springer; 2009. p. 313–392.
  • Remize F, Andriru E, Dequin S. Engineering of the pyruvate dehydrogenase by pass in Saccharomyces cerevisiae: role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4pin acetate formation during alcoholic fermentation. Appl Environ Microbiol. 2000;66(8):3151–3159.
  • Morano KA, Grant CM, Moye-Rowley WS. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics. 2012;190:1157–1195.
  • Guaragnella N, Antonacci L, Passarella S, et al. Hydrogen peroxide and superoxide anion production during acetic acid-induced yeast programmed cell death. Folia Microbiol. 2007;7:237–240.
  • Giannattasio S, Guaragnella N, Corte-Real M, et al. Acid stress adaptation protects Saccharomyces cerevisiae from acetic acid-induced programmed cell death. Gene. 2005;354:93–99.
  • Herrero E, Ros J, Belli G, et al. Redox control and oxidative stress in yeast cells. Biochim Biophys Acta Gen Sub. 2008;1780:1217–1235.
  • Madeo F, Frohlich E, Frohlich KU. A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol. 1997;139:729–734.
  • Madeo F, Frohlich E, Ligr M, et al. Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol. 1999;145:757–767.
  • Ludovico P, Sansonetty F, Silva MT, et al. Acetic acid induces a programmed cell death process in the food spoilage yeast Zygosaccharomyces bailii. FEMS Yeast Res. 2003;3:91–96.
  • Ludovico P, Sousa MJ, Silva MT, et al. Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology. 2001;147:2409–2415.