1,711
Views
14
CrossRef citations to date
0
Altmetric
Article; Pharmaceutical Biotechnology

Analysis of the transcriptome of Isodon rubescens and key enzymes involved in terpenoid biosynthesis

, , , , , & show all
Pages 592-601 | Received 16 Oct 2015, Accepted 21 Jan 2016, Published online: 16 Feb 2016

References

  • Liu J, Liang JY, Xie T. 冬凌草研究进展 [Development of Rabdosia rubescens (Hemsl.) Hara]. Strait Pharm J. 2004;16:1–7. Chinese.
  • Li Q, Feng WS. 冬凌草化学成分、药理作用及开发研究进展 [The latest development of researches on the chemical constituents and pharmacological activity of Rabdosia rubescens (Hemls.) Hara]. J Henna Univ Chin Med. 2003;18:31–33. Chinese.
  • Feng Y, Liang JY, Jing L. 冬凌草化学成分的研究 [Study on the constituents of Rabdosia rubescens Hemsl]. J China Pharm Univ. 2003;34:302–304. Chinese.
  • Zheng XK, Li Q, Feng WS. 冬凌草中酚酸类化学成分研究 [Studies on chemical constituents of phenolic acids in Rabdosia rubescens]. Chin pharm J. 2004;39:335–336. Chinese.
  • Han J, Ye M, Chen HB, et al. Determination of diterpenoids and flavonoids in Isodon rubescens by LC-ESI-MS-MS. Chromatographia. 2005;62:203–207. Chinese.
  • Zuo HJ, Li D, Wu B, et al. 冬凌草的化学成分及其抗肿瘤活性 [Studies on the constituents of Rabdosia rubescens (Hemsl.) Hara and their antitumor activities in vitro]. J Shen yang Pharm Univ. 2005;22:258–262. Chinese.
  • Yan XB, Lei M, Yu KE, et al. 冬凌草的化学成分研究 [Study on the constituents of Rabdosia rubescens]. Chem Res. 2006;17:80–82. Chinese.
  • Liu X, Zhan R, Wang WG, et al. Three new 11,20-epoxy-ent-kauranoids from Isodon rubescens. Arch Pharm Res. 2012;35:2147–2151.
  • Jia JL, Xin YW, Hui L, et al. 冬凌草甲素对NB4细胞的生长抑制作用及作用机制 [Inhibitory effect of oridonin on the proliferation of NB4 cells and its mechanism volume]. Chin-Ger J Clin Oncol. 2004;1:51–54. Chinese.
  • Chen S, Liu R, Zhang HD. Efficacy of Rabdosia rubescens in the treatment of gingivitis. J Huazhong Univ Sci Technol Med Sci. 2009;5:659–663.
  • Salminen A, Lehtonen M, Suuronen T, et al. Terpenoids: natural inhibitors of NF-κB signaling with anti-inflammatory and anticancer potential. Cell Mol Life Sci. 2008;65:2979–2999.
  • Li YJ, Wang TX, Yang XF, et al. 冬凌草愈伤组织诱导及细胞培养的研究 [Studies on the induction of calli and cell culture of Rabdosia rubescens]. Chin Tradit Herb Drug. 2000;31:938–941. Chinese.
  • Li DJ, Wei JF, Xu N, et al. 植物生长物质对冬凌草愈伤组织生长及褐化的影响 [Effect of plant growth substance on callus growth and browning of Rabdosia rubescens]. J Anhui Agric Sci. 2006;34:1118–1136. Chinese.
  • Su XH, Dong CM, Wang CL. 冬凌草离体培养体系的建立及主要次生代谢产物的测定 [Establishment of culture system of Rabdosia rubescens (Hemsl.) Hara and content of the main secondary metabolites in its regenerated plantlets]. Acta Bot Boreal-Occid Sin. 2008;28:310–316. Chinese.
  • Su XH, Dong CM, Wang WW. 氮碳源对冬凌草再生植株生长及次生代谢产物的影响 [Effects of sucrose concentration, nitrogen on the growth and main secondary metabolites accumulated of regeneration plant of Rabdosia rubescens (Hemsi.) Hara]. Acta Bot Boreal-Occid Sin. 2009;29:494–498. Chinese.
  • Li GM, Li ZC, Xu KY, et al. 抗癌植物冬凌草种质资源遗传多样性分析 [Analysis on genetic diversity of germplasm resources of anticancer plant Rabdosia rubescens (Labiatae)]. J Trop Subtrop Bot. 2008;16:116–122. Chinese.
  • Ai PF, Lu LP, Song JJ. Cryopreservation of in vitro-grown shoot-tips of Rabdosia rubescens by encapsulation-dehydration and evaluation of their genetic stability. PCTOC. 2012;108:381–387.
  • Bleeker PM, Spyropoulou EA, Diergaarde PJ, et al. RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. Plant Mol Biol. 2011;77:323–336.
  • Li P, Deng WQ, Li TH, et al. Illumina-based de novo transcriptome sequencing and analysis of Amanita exitialis basidiocarps. Gene. 2013;532(1):63–71.
  • Liang C, Liu X, Yiu SM, et al. De novo assembly and characterization of Camelina sativa transcriptome by paired-end sequencing. BMC Genomics. 2013;14:146–156.
  • Mudalkar S, Golla R, Ghatty S, et al. De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers. Plant Mol Bio. 2014;84:159–171.
  • Garcia-Seco D, Zhang Y, Gutierrez-Mañero FJ, et al. RNA-Seq analysis and transcriptome assembly for blackberry (Rubus sp.Var. Lochness) fruit. BMC Genomics. 2015;16:5–15.
  • Stone JD, Storchova H. The application of RNA-seq to the comprehensive analysis of plant mitochondrial transcriptomes. Mol Genet Genomics. 2015;290:1–9.
  • Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–652.
  • Kyoto Encyclopedia of Genes and Genomes [Internet]. Kanehisa Laboratories; c1995–c2016 [ cited 2016 Oct 16]. Available from: http://www.genome.jp/kegg/.
  • Huang Y, Wu X, Jian D, et al. De novo transcriptome analysis of a medicinal fungi Phellinus linteus and identification of SSR markers. Biotechnol Biotechnol Equip. 2015;29:395–403.
  • Chen SQ, Song J, Cui C. 冬凌草二萜类成分的化学指纹图谱研究及评价[Research and evaluation on chemical fingerprints of diterpenoids from Isodon rubescens]. J Wuhan Bot Res. 2012;30:519–527. Chinese.
  • Zhang R, Zhang BL, Gu-Cai L, et al. Enhancement of ginsenoside Rg1 in Panax ginseng hairy root by overexpressing the α-l-rhamnosidase gene from Bifidobacterium breve. Biotechnol Lett. 2015;37:2091–2096.
  • Shi M, Luo XQ, Guan HJ, et al. Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-d-xylulose 5-phosphate reductoisomerase. Funct Integr Genomics. 2014;14:603–615.
  • Yang JF, Adhikari MN, Liu H, et al. Characterization and functional analysis of the genes encoding1-deoxy- D -xylulose-5-phosphate reductoisomerase and 1-deoxy- D -xylulose-5-phosphate synthase, the two enzymes in the MEP pathway, from Amomum villosum Lour. Mol Biol Rep. 2012;39:8287–8296.
  • Shen Q, Yan TX, Fu XQ, et al. Transcriptional regulation of artemisinin biosynthesis in Artemisia annua L. Sci Bull. 2016;19:1–8.
  • Yang L, Yang CQ, Li CY, et al. Recent advances in biosynthesis of bioactive compounds in traditional Chinese medicinal plants. Sci Bull. 2015;1–15.
  • Oldfield E, Lin FY. Terpene biosynthesis: modularity rules. Angew Chem Int Ed. 2012;51:1124–1137.
  • Zhang WJ, Huang QL, Hua ZC. Oridonin: a promising anticancer drug from China. Front Biol. 2010;5:540–545.
  • Hua WP, Zhang Y, Song J, et al. De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics. 2011;98:272–279.
  • Hyun TK, Rim Y, Jang HJ, et al. De novo transcriptome sequencing of Momordica cochinchinensis to identify genes involved in the carotenoid biosynthesis. Plant Mol Biol. 2012;79:413–427.
  • Zheng KY, Zhang GH, Jiang NH, et al. Analysis of the transcriptome of Marsdenia tenacissima discovers putative polyoxypregnane glycoside biosynthetic genes and genetic markers. Genomics. 2014;104:186–193
  • Senthil K, Jayakodi M, Thirugnanasambantham P, et al. Transcriptome analysis reveals in vitro cultured Withania somnifera leaf and root tissues as a promising source for targeted withanolide biosynthesis. BMC Genomics. 2015;16:14–29.
  • Zhang MF, Jiang LM, Zhang DM, et al. De novo transcriptome characterization of Lilium ‘Sorbonne’ and key enzymes related to the flavonoid biosynthesis. Mol Genet Genomics. 2015;290:399–412.
  • Zhang SW, Ding F, He XH, et al. Characterization of the ‘Xiangshui’ lemon transcriptome by de novo assembly to discover genes associated with self-incompatibility. Mol Genet Genomics. 2015;290:365–375.
  • Wang X, Li ST, Li J, et al. De novo transcriptome sequencing in Pueraria lobata to identify putative genes involved in isoflavones biosynthesis. Plant Cell Rep. 2015;34:733–743.
  • Wang D, Cao LY, Gao JP. 党参转录组中SSR位点信息分析.中草药 [Data mining of simple sequence repeats in Codonopsis pilosula transcriptome]. Chin Tradit. Her Drugs. 2014;45:2390–2393. Chinese.
  • Sun XD, Zhou SM, Meng FL, et al. De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing. Plant Cell Rep. 2012;31:1823–1828.
  • Tang Q, Ma XJ, Mo CM, et al. An efficient approach to finding Siraitiagrosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics. 2011;12:343.