2,131
Views
12
CrossRef citations to date
0
Altmetric
Article; Medical Biotechnology

Relevance of inhomogeneous–anisotropic models of human cortical bone: a tibia study using the finite element method

ORCID Icon & ORCID Icon
Pages 538-547 | Received 19 Oct 2015, Accepted 12 Feb 2016, Published online: 04 Mar 2016

References

  • Huston RL. Principles of biomechanics. Boca Raton (FL): CRC Press; 2009.
  • Mow VC, Huiskes R. Basic orthopaedic biomechanics & mechano-biology. 3rd ed. Philadelphia (PA): Lippincott; 2005.
  • Ozkaya N, Nordin M. Fundamentals of biomechanics: equilibrium, motion, and deformation. 2nd ed. New York (NY): Springer; 1999.
  • Wang X, Nyman JS, Dong X, et al. Fundamental biomechanics in bone tissue engineering. San Rafael (CA): Morgan & Claypool; 2010.
  • Peng L, Bai J, Zeng X, et al. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys. 2006;28:227–233.
  • Yang H, Ma X, Guo T. Some factors that affect the comparison between isotropic and orthotropic inhomogeneous finite element material models of femur. Med Eng Phys. 2010;32:553–560.
  • Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties to density and CT numbers in human bone. Med Eng Phys. 1995;17:347–355.
  • Baca V, Horak Z. Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys. 2007;29:935.
  • Knets IV, Saulgozis YZ, Yanson KA. Deformability and strength of compact bone tissue during tensioning. Polym Mech. 1974;10:419–423.
  • Mackerle J. Finite element modeling and simulations in orthopedics: a bibliography 1998–2005. Comput Methods Biomech Biomed Eng. 2006;9:149–199.
  • Cook S, Lavernia C, Burke S, et al. A biomechanical analysis of the etiology of tibia vara. J Pediatr Orthoped. 1983;3:449–454.
  • Little RB, Wevers HW, Siu D, et al. A three-dimensional finite element analysis of the upper tibia. J Biomech Eng. 1986;108:111–119.
  • Mehta BV, Rajani S. Finite element analysis of the human tibia. Trans Biomed Health. 1995;2:309–316.
  • Müller-Karger CM, Gonzalez C, Aliabadi MH, et al. Three dimensional BEM and FEM stress analysis of the human tibia under patholological conditions. Comput Model Eng Sci. 2001;2:1–13.
  • Gefen A. Consequences of imbalanced joint-muscle loading of the femur and tibia: from bone cracking to bone loss. In: Leder RS, editor. 25th Annual International Conference of the IEEE: Engineering in Medicine and Biology Society. Proceedings; 2003 Sep 17–21; Cancun (Mexico): IEEE; 2003; p. 1827–1830.
  • Limbert G, Estivalezes E, Hobatho MC, et al. In vivo determination of homogenised mechanical characteristics of human tibia: application to the study of tibial torsion in vivo. Clin Biomech (Bristol, Avon). 1998;13:473–479.
  • Ionesco I, Conway T, Schonning A, et al. Solid modeling and static finite element analysis of the human tibia. ASME Summer Bioengineering Conference. Proceedings; 2003 Jun 25–29; Key Biscayne (FL): ASME; 2003.
  • Kasraa M, Grynpasb MD. On shear properties of trabecular bone under torsional loading: effects of bone marrow and strain rate. J Biomech. 2007;40:2898–2903.
  • Pfafrod GO, Slutskii LI, Moorlat PA, et al. Evaluation of some deformation and strength characteristics of compact bone tissue according to the data of a biochemical study. Polym Mech. 1976;12:934–942.
  • Harrington I. A bioengineering analysis of force actions at the knee in normal and pathological gait. Biomed Eng. 1976;11:167–172.
  • Duda GN, Mandruzzato F, Heller M, et al. Mechanical boundary conditions of fracture healing: borderline indications in the treatment of unreamed tibial nailing. J Biomech. 2001;34:639–650.
  • Bellchamber T, van den Bogert AJ. Contributions of proximal and distal moments to axial tibial rotation during walking and running. J Biomech. 2000;33:1397–1403.
  • Hull ML, Johnson C. Axial rotation of the lower limb under torsional loading: I. Static and dynamic measurements in vivo. In: Johnson RJ, Mote CD, Binet M-H, editors. Skiing Trauma and Safety: Seventh International Symposium. Proceedings; 1987 May 11–15; Chamonix. Philadelphia (PA): ASTM International; 1989. p. 277–290.
  • Nalla RK, Stolken JS, Kinney JH, et al. Fracture in human cortical bone: local fracture criteria and toughening mechanisms. J Biomech. 2005;38:1517–1525.
  • Keaveny TM, Morgan EF, Niebur GL, et al. Biomechanics of trabecular bone. Annu Rev Biomed Eng. 2001;3:307–333.
  • Sanyal A, Gupta A, Bayraktar HH, et al. Shear strength behavior of human trabecular bone. J Biomech. 2012;45:2513–2519.
  • Nalla RK, Kinney JH, Ritchie RO. Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater. 2003;2:164–168.
  • Morgan EF, Lee JJ, Keaveny TM. Sensitivity of multiple damage parameters to compressive overload in cortical bone. J Biomech Eng. 2005;127:557–562.
  • Nyman JS, Leng H, Neil Dong X, et al. Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading. J Mech Behav Biomed Mater. 2009;2:613–619.
  • Luo Q, Leng H, Acuna R, et al. Constitutive relationship of tissue behavior with damage accumulation of human cortical bone. J Biomech. 2010;43:2356–2361.
  • Keyak JH, Rossi SA, Jones KA, et al. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1998;31:125–133.
  • Chen G, Schmutz B, Epari D, et al. A new approach for assigning bone material properties from CT images into finite element models. J Biomech. 2010;43:1011–1015.
  • Teo J, Si-Hoe K, Keh J, et al. Correlation of cancellous bone microarchitectural parameters from micro CT to CT number and bone mechanical properties. Mat Sci Eng C-Biomim. 2007;27:333–339.