2,209
Views
4
CrossRef citations to date
0
Altmetric
Review; Medical Biotechnology

Individual capacity for DNA repair and maintenance of genomic integrity: a fertile ground for studies in the field of assisted reproduction

&
Pages 419-433 | Received 06 Jan 2016, Accepted 26 Feb 2016, Published online: 29 Mar 2016

References

  • Gnoth C, Godehardt E, Frank-Herrmann P, et al. Definition and prevalence of subfertility and infertility. Hum Reprod. 2005;20:1144–1147.
  • Sharlip ID, Jarow JP, Belker AM, et al. Fertil Steril. 2002;77:873–882.
  • Baird DT, Collins J, Egozcue J, et al. Fertility and ageing. Hum Reprod Update. 2005;11:261–276.
  • Menasha J, Levy B, Hirschhorn K, et al. Incidence and spectrum of chromosome abnormalities in spontaneous abortions: new insights from a 12-year study. Genet Med. 2005;7:251–263.
  • Sartorius GA, Nieschlag E. Paternal age and reproduction. Hum Reprod Update. 2010;16:65–79.
  • Johnson JA, Tough S. Society of obstetricians and gynaecologists of Canada. Delayed child-bearing. J Obstet Gynaecol Can. 2012;34:80–93.
  • Belloc S, Hazout A, Zini A, et al. How to overcome male infertility after 40: influence of paternal age on fertility. Maturitas. 2014;78:22–29.
  • Bosteels J, Van Herendael B, Weyers S, et al. The position of diagnostic laparoscopy in current fertility practice. Hum Reprod Update. 2007;13:477–485.
  • Taylor-Robinson D. The male reservoir of Ureaplasma urealyticum. Pediatric Infectious Dis. 1986;5:S234–235.
  • Huang C, Zhu HL, Xu KR, et al. Mycoplasma and ureaplasma infection and male infertility: a systematic review and meta-analysis. Andrology. 2015;3:809–816.
  • Shah K, Sivapalan G, Gibbons N, et al. The genetic basis of infertility. Reproduction. 2003;126:13–25.
  • Chantot-Bastaraud S, Ravel C, Siffroi JP. Underlying karyotype abnormalities in IVF/ICSI patients. Reprod Biomed Online. 2008;16:514–522.
  • Hofherr SE, Wiktor AE, Kipp BR, et al. Clinical diagnostic testing for the cytogenetic and molecular causes of male infertility: the Mayo Clinic experience. J Assist Reprod Genet. 2011; 28:1091–1098.
  • Johnson NP, Bagrie EM, Coomarasamy A, et al. Ovarian reserve tests for predicting fertility outcomes for assisted reproductive technology: the International Systematic Collaboration of Ovarian Reserve Evaluation protocol for a systematic review of ovarian reserve test accuracy. BJOG. 2006;113:1472–1480.
  • Toth B, Vocke F, Rogenhofer N, et al. Paternal thrombophilic gene mutations are not associated with recurrent miscarriage. Am J Reprod Immunol. 2008;60:325–332.
  • Luo L, Chen Y, Wang L, et al. Polymorphisms of genes involved in the folate metabolic pathway impact the occurrence of unexplained recurrent pregnancy loss. Reprod Sci. 2015;22:845–851.
  • De Stefano V, Chiusolo P, Paciaroni K, et al. Epidemiology of factor V Leiden: clinical implications. Semin Thromb Hemost. 1998;24:367–379.
  • Laposata M. The prothrombin G20210A mutation: a new high-prevalence congenital risk factor for thrombosis. Gastroenterology. 1999;116:213–215.
  • Wilcken B, Bamforth F, Li Z, et al. Geographical and ethnic variation of the 41 677C>T allele of 5,10 ethylenetetrahydrofolate reductase (MTHFR): findings from over 7000 newborns from 16 areas worldwide. J Med Genet. 2003;40:619–625.
  • Farahmand K, Totonchi M, Hashemi M, et al. Thrombophilic genes alterations as risk factor for recurrent pregnancy loss. J Maternal-Fetal Neonatal Med. 2015;6:1–5.
  • Liu Q, Li Y, Zhao J, et al. Association of polymorphisms -1154G/A and -2578C/A in the vascular endothelial growth factor gene with decreased risk of endometriosis in Chinese women. Hum Reprod. 2009;24:2660–2666.
  • Samli H, Demir BÇ, Ozgöz A, et al. Vascular endothelial growth factor gene 1154 G/A, 2578 C/A, 460 C/T, 936 C/T polymorphisms and association with recurrent pregnancy losses. Genet Mol Res. 2012;11:4739–4745.
  • Goodman C, Jeyendran RS, Coulam CB. P53 tumor suppressor factor, plasminogen activator inhibitor, and vascular endothelial growth factor gene polymorphisms and recurrent implantation failure. Fertil Steril. 2009;92:494–498.
  • Vagnini LD, Nascimento AM, Canas MD, et al. The relationship between vascular endothelial growth factor 1154G/A polymorphism and recurrent implantation failure. Med Princ Pract. 2015;24:533–537.
  • Vogt PH, Edelmann A, Kirsch S, et al. Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum Mol Genet. 1996;5:933–943.
  • Sun C, Skaletsky H, Birren B, et al. An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nature Genet. 1999;23:429–432.
  • Dam AHDM, Koscinski I, Kremer JAM, et al. Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet. 2007;81:813–820.
  • Miyamoto T, Hasuike S, Yogev L, et al. Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet. 2003;362:1714–1719.
  • Bolor H, Mori T, Nishiyama S, et al. Mutations of the SYCP3 gene in women with recurrent pregnancy loss. Am J Hum Genet. 2009;84:14–20.
  • Pitteloud N, Durrani S, Raivio T, et al. Complex genetics in idiopathic hypogonadotropic hypogonadism. Front Horm Res. 2010;39:142–153.
  • Weiss J, Axelrod L, Whitcomb RW, et al. Hypogonadism caused by a single amino acid substitution in the beta subunit of luteinizing hormone. New Eng J Med. 1992;326:179–183.
  • Ramanujam LN, Liao WX, Roy AC, et al. Association of molecular variants of luteinizing hormone with menstrual disorders. Clin Endocrinol. 1999;51:243–246.
  • Layman LC, Lee E-J, Peak DB, et al. Delayed puberty and hypogonadism caused by mutations in the follicle-stimulating hormone beta-subunit gene. New Eng J Med. 1997;337:607–611.
  • Matthews CH, Borgato S, Beck-Peccoz P, et al. Primary amenorrhoea and infertility due to a mutation in the beta-subunit of follicle-stimulating hormone. Nature Genet. 1993;5:83–86.
  • Griffin JE, Wilson JD. The syndromes of androgen resistance. New Eng J Med. 1980;302:198–209.
  • Tut TG, Ghadessy FJ, Trifiro MA, et al. Long polyglutamine tracts in the androgen receptor are associated with reduced trans-activation, impaired sperm production, and male infertility. J Clin Endocrinol Metabolism. 1997;82:3777–3782.
  • Dowsing AT, Yong EL, Clark M, et al. Linkage between male infertility and trinucleotide repeat expansion in the androgen-receptor gene. Lancet. 1999;354:640–643.
  • Hickey T, Chandy A, Norman RJ. The androgen receptor CAG repeat polymorphism and X-chromosome inactivation in Australian Caucasian women with infertility related to polycystic ovary syndrome. J Clin Endocrinol Metabolism. 2002;87:161–165.
  • Petkova R, Chelenkova P, Georgieva E, et al. What's your poison? Impact of individual repair capacity on the outcomes of genotoxic therapies in cancer. Part I – role of individual repair capacity in the constitution of risk for late-onset multifactorial disease. Biotechnol Biotechnol Equip. 2013;27:4208–4216.
  • Chakarov S, Petkova R, Russev GC. Individual capacity for detoxification of genotoxic compounds and repair of DNA damage. Commonly used methods for assessment of capacity for DNA repair. Biodiscovery [Internet]. 2014;11:2,1–70. [cited 2016 Jan 4]. Available from: http://dx.doi.org/10.7750/BioDiscovery.2014.11.2
  • Yoshida S. Elucidating the identity and behavior of spermatogenic stem cells in the mouse testis. Reproduction. 2012;144:293–302.
  • Caron C, Govin J, Rousseaux S, et al. How to pack the genome for a safe trip. Prog Mol Subcell Biol. 2005;38:65–89.
  • Boissonneault G. Chromatin remodeling during spermiogenesis: a possible role for the transition proteins in DNA strand break repair. FEBS Lett. 2002;514:111–114.
  • Gosálvez J, López-Fernández C, Fernández JL et al. Relationships between the dynamics of iatrogenic DNA damage and genomic design in mammalian spermatozoa from eleven species. Mol Reprod Dev. 2011;78:951–961.
  • González-Marín C, Gosálvez J, Roy R. Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Int J Mol Sci. 2012;13:14026–14052.
  • D'Agata R, Vicari E, Moncada ML et al. Generation of reactive oxygen species in subgroups of infertile men. Int J Androl. 1990;13:344–351.
  • Kodama H, Yamaguchi R, Fukuda J, et al. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;68:519–524.
  • Guzick DS, Overstreet JW, Factor-Litvak P, et al. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med. 2001;345:1388–1393.
  • Sakkas D, Moffatt O, Manicardi GC, et al. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod. 2002;66:1061–1067.
  • Irvine DS, Twigg JP, Gordon EL, et al. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21:33–44.
  • Schulte RT, Ohl DA, Sigman M, et al. Sperm DNA damage in male infertility: etiologies, assays, and outcomes. J Assist Reprod Genet. 2010;27:3–12.
  • Host E, Lindenberg S, Smidt-Jensen S. The role of DNA strand breaks in human spermatozoa used for IVF and ICSI. Acta Obstetricia Gynecologica Scandinavica. 2000;79:559–563.
  • Larson-Cook KL, Brannian JD, Hansen KA, et al. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril. 2003;80:895–902.
  • Shamsi MB, Imam SN, Dada R. Sperm DNA integrity assays: diagnostic and prognostic challenges and implications in management of infertility. J Assist Reprod Genet. 2011;28:1073–1085.
  • Evgeni E, Charalabopoulos K, Asimakopoulos B. Human sperm DNA fragmentation and its correlation with conventional semen parameters. J Reprod Infertil. 2014;15:2–14.
  • Wright C, Milne S, Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online. 2014;28:684–703.
  • Bonde JP. Semen quality in welders exposed to radiant heat. Br J Ind Med. 1992;49:5–10.
  • Singh Z, Chadha P. Assessment of DNA damage as an index of genetic toxicity in welding microenvironments among iron-based industries. Toxicol Ind Health. 2015 Jun 18; pii:0748233715590518. Epub 2016 Jan 4. Available from: http://dx.doi.org/10.1177/0748233715590518
  • Li Y, Wu J, Zhou W, et al. Association between environmental exposure to cadmium and human semen quality. Int J Environ Health Res. 2015;7:1–12.
  • Chisholm CA, Bray MJ, Karns LB. Successful pregnancy in a woman with Bloom syndrome. Am J Med Genet. 2001;102:136–138.
  • Ng JM, Vrieling H, Sugasawa K, et al. Developmental defects and male sterility in mice lacking the ubiquitin-like DNA repair gene mHR23B. Mol Cell Biol. 2002;22:1233–1245.
  • Ji G, Gu A, Zhu P, et al. Joint effects of XRCC1 polymorphisms and polycyclic aromatic hydrocarbons exposure on sperm DNA damage and male infertility. Toxicol Sci. 2010;116:92–98.
  • Ji G, Gu A, Zhou Y, et al. Interactions between exposure to environmental polycyclic aromatic hydrocarbons and DNA repair gene polymorphisms on bulky DNA adducts in human sperm. PLoS One [Internet]. 2010;5:e13145. [cited 2016 Jan 4]. Available from: http://dx.doi.org/10.1371/journal.pone.0013145
  • Gu A, Ji G, Zhou Y, et al. Polymorphisms of nucleotide-excision repair genes may contribute to sperm DNA fragmentation and male infertility. Reprod Biomed Online. 2010;21:602–609.
  • Ji G, Gu A, Xia Y, et al. ERCC1 and ERCC2 polymorphisms and risk of idiopathic azoospermia in a Chinese population. Reprod Biomed Online. 2008;17:36–41.
  • Xu K, Lu T, Zhou H, et al. The role of MSH5 C85T and MLH3 C2531T polymorphisms in the risk of male infertility with azoospermia or severe oligozoospermia. Clinica Chimica Acta. 2010;411:49–52.
  • Ji G, Long Y, Zhou Y, et al. Common variants in mismatch repair genes associated with increased risk of sperm DNA damage and male infertility. BMC Med. 2012;10:49.
  • Ji G, Yan L, Liu W, et al. Polymorphisms in double-strand breaks repair genes are associated with impaired fertility in Chinese population. Reproduction. 2013;145:463–470.
  • Khalil HS, Tummala H, Chakarov S, et al. Targeting ATM pathway for therapeutic intervention in cancer. Biodiscovery [Internet]. 2012;1:3, 1–13. [cited 2016 Jan 4]. Available from: http://dx.doi.org/10.7750/BioDiscovery.2012.1.3
  • Su Y, Swift M. Mortality rates among carriers of ataxia-telangiectasia mutant alleles. Ann Intern Med. 2000;133:770–778.
  • Gilad S, Bar-Shira A, Harnik R, et al. Ataxia-telangiectasia: founder effect among North African Jews. Hum Mol Genet. 1996;5:2033–2037.
  • Barlow C, Liyanage M, Moens PB, et al. Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development. 1998;125:4007–4017.
  • Li Z, Yu J, Zhang T, et al. rs189037, a functional variant in ATM gene promoter, is associated with idiopathic nonobstructive azoospermia. Fertil Steril. 2013;100:1536–1541.
  • Huang C, Liu W, Ji GX, et al. Genetic variants in TP53 and MDM2 associated with male infertility in Chinese population. Asian J Androl. 2012;14:691–694.
  • Mashayekhi F, Hadiyan SP. A single-nucleotide polymorphism in TP53 may be a genetic risk factor for Iranian patients with idiopathic male infertility. Andrologia. 2012;44(Suppl 1):560–564.
  • Jin Q, Wang B, Wang J, et al. Association between TP53 gene Arg72Pro polymorphism and idiopathic infertility in southeast Chinese Han males. Syst Biol Reprod Med. 2013;59:342–346.
  • Chicheva Z, Chelenkova P, Petkova R, et al. Children of the Sun, children of the Moon – a mini-panel for assessment of inter-individual variation between the capacity of healthy individuals to repair everyday genotoxic insults. Biotechnol Biotechnol Equip. 2012;26:3142–3147.
  • Thomas M, Kalita A, Labrecque S, et al. Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol. 1999;19:1092–1100.
  • A ZC, Yang Y, Zhang SZ, et al. Single nucleotide polymorphism C677T in the methylenetetrahydrofolate reductase gene might be a genetic risk factor for infertility for Chinese men with azoospermia or severe oligozoospermia. Asian J Androl. 2007;9:57–62.
  • Kim SY, Lim JW, Kim JW, et al. Association between genetic polymorphisms in folate-related enzyme genes and infertile men with non-obstructive azoospermia. Syst Biol Reprod Med. 2015;61:286–292.
  • Gava MM, Kayaki EA, Bianco B, et al. Polymorphisms in folate-related enzyme genes in idiopathic infertile Brazilian men. Reprod Sci. 2011;18:1267–1772.
  • Kurzawski M, Wajda A, Malinowski D, et al. Association study of folate-related enzymes (MTHFR, MTR, MTRR) genetic variants with non-obstructive male infertility in a Polish population. Genet Mol Biol. 2015;38:42–47.
  • Ahmadi A, Ng SC. Fertilising ability of DNA-damaged spermatozoa. J Exp Zool. 1999;284:696–704.
  • Hanawalt PC. Preferential repair of damage in actively transcribed DNA sequences in vivo. Genome. 1989;31:605–611.
  • Duran EH, Morshedi M, Taylor S, et al. Sperm DNA quality predicts intrauterine insemination, outcome: a prospective cohort study. Hum Reprod 2002;12:3122–3128.
  • Strauss JF. The ovarian life cycle. In: Strauss JF III, Barbieri RL, editors. Yen & Jaffe's reproductive endocrinology. 7th ed. Philadelphia (PA): Elsevier Inc.; 2014. p. 157–192.
  • Peters H. Intrauterine gonadal development. Fertil Steril. 1976;27:493–500.
  • Abir R, Orvieto R, Dicker D, et al. Preliminary studies on apoptosis in human fetal ovaries. Fertil Steril. 2002;78:259–264.
  • Guli CL, Smyth DR. UV-induced DNA repair is not detectable in pre-dictyate oocytes of the mouse. Mutat Res. 1988;208:115–119.
  • Guli CL, Smyth DR. Lack of effect of maternal age on UV-induced DNA repair in mouse oocytes. Mutat Res. 1989;210:323–328.
  • Nagaoka SI, Hassold TJ, Hunt PA. Human aneuploidy: mechanisms and new insights into an age-old problem. Nature Rev Genet. 2012;13:493–504.
  • Paskulin DD, Cunha-Filho JS, Souza CA, et al. TP53 PIN3 and PEX4 polymorphisms and infertility associated with endometriosis or with post-in vitro fertilisation implantation failure. Cell Death Dis [Internet]. 2012;3:e392. [cited 2016 Jan 4]. Available from: http://dx.doi.org/10.1038/cddis.2012.116
  • Gemignani F, Moreno V, Landi S, et al. A TP53 polymorphism is associated with increased risk of colorectal cancer and with reduced levels of TP53 mRNA. Oncogene. 2004;23:1954–1956.
  • Chang CC, Hsieh YY, Tsai FJ, et al. The proline form of p53 codon 72 polymorphism is associated with endometriosis. Fertil Steril. 2002;77:43–45.
  • Ammendola M, Gloria-Bottini F, Sesti F, et al. Association of p53 codon 72 polymorphism with endometriosis. Fertil Steril. 2008;90:406–408.
  • Johnson MC, Torres M, Alves A, et al. Augmented cell survival in eutopic endometrium from women with endometriosis: expression of c-myc, TGF-beta1 and bax genes. Reprod Biol Endocrinol [Internet]. 2005;3:45, 1–8. [cited 2016 Jan 4]. Available from: http://dx.doi.org/10.1186/1477-7827-3-45
  • Kay C, Jeyendran RS, Coulam CB. p53 tumour suppressor gene polymorphism is associated with recurrent implantation failure. Reprod Biomed Online. 2006;13:492–496.
  • Lass A, Weiser W, Munafo A, et al. Leukemia inhibitory factor in human reproduction. Fertil Steril. 2001;76:1091–1096.
  • Hu W, Feng Z, Teresky AK, et al. p53 regulates maternal reproduction through LIF. Nature. 2007;450:721–724.
  • Steck T, Giess R, Suetterlin MW, et al. Leukaemia inhibitory factor (LIF) gene mutations in women with unexplained infertility and recurrent failure of implantation after IVF and embryo transfer. Eur J Obstet Gynecol Reprod Biol. 2004;112:69–73.
  • Kang HJ, Feng Z, Sun Y, et al. Single-nucleotide polymorphisms in the p53 pathway regulate fertility in humans. Proc Natl Acad Sci USA. 2009;106:9761–9766.
  • Feng Z, Zhang C, Kang HJ, et al. Regulation of female reproduction by p53 and its family members. FASEB J. 2011;25:2245–2255.
  • Hirota Y, Daikoku T, Tranguch S, et al. Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J Clin Invest. 2010;120,803–815.
  • Arabadjiev A, Petkova R, Momchilova A, et al. Of mice and men – differential mechanisms of maintaining the undifferentiated state in mESC and hESC. Biodiscovery [Internet]. 2012;3:1. [cited 2016 Jan 4]. Available from: http://dx.doi./org/10.7750/BioDiscovery.2012.3.1
  • Corbo RM, Gambina G, Scacchi R. How contemporary human reproductive behaviors influence the role of fertility-related genes: the example of the p53 gene. PLoS One [Internet]. 2012 [2016 Jan 04];7:e35431, 1–5. Available from: http://dx.doi.org/10.1371/journal.pone.0035431.
  • Orford KW, Scadden DT. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nature Rev Genet. 2008;9:115–128.
  • Kim Y, Deshpande A, Dai Y, et al. Cyclin-dependent kinase 2-associating protein 1 commits murine embryonic stem cell differentiation through retinoblastoma protein regulation. J Biol Chem. 2009;284:23405–23414.
  • Wennerholm UB, Söderström-Anttila V, Bergh C, et al. Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data. Hum Reprod. 2009;24:2158–2172.
  • Fraga LR, Dutra CG, Boquett JA, et al. p53 signaling pathway polymorphisms associated to recurrent pregnancy loss. Mol Biol Rep. 2014;41:1871–1877.
  • Fraga LR, Boquett JA, Dutra CG, et al. Interaction between TP63 and MDM2 genes and the risk of recurrent pregnancy loss. Eur J Obstet Gynecol Reprod Biol. 2014;182:7–10.
  • Titus S, Li F, Stobezki R, et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci Transl Med. 2013;5:172ra21.
  • Wang ET, Pisarska MD, Bresee C, et al. BRCA1 germline mutations may be associated with reduced ovarian reserve. Fertil Steril. 2014;102:1723–1728.
  • Perri T, Lifshitz D, Sadetzki S, et al. Fertility treatments and invasive epithelial ovarian cancer risk in Jewish Israeli BRCA1 or BRCA2 mutation carriers. Fertil Steril. 2015;103:1305–1312.
  • De Benedictis G, Rose G, Carrieri G, et al. Mitochondrial DNA inherited variants are associated with successful ageing and longevity in humans. FASEB J. 1999;13:1532–1536.
  • Marcuello A, Martínez-Redondo D, Dahmani Y, et al. Human mitochondrial variants influence on oxygen consumption. Mitochondrion. 2009;9:27–30.
  • May-Panloup P, Desquiret V, Morinière C, et al. itochondrial macro-haplogroup JT may play a protective role in ovarian ageing. Mitochondrion. 2014;18:1–6.
  • Sykes B. The molecular genetics of European ancestry. Philos Trans R Soc Lond B. 1999;354:131–138.
  • Cabler S, Agarwal A, Flint M, et al. Obesity: modern man's fertility nemesis. Asian J Androl. 2010;12:480–489.
  • Klenov VE, Jungheim ES. Obesity and reproductive function: a review of the evidence. Curr Opin Obstet Gynecol. 2014;26:455–460.
  • Salmanoglu M, Kucukardali Y, Kucukodaci Z, et al. Prevalence of the DNA repair enzyme-NEIL1 gene mutation in patients with type 2 diabetes in the Turkish population. J Endocrinol Invest. 2012;35:401–406.
  • Park MH, Kwak SH, Kim KJ, et al. Identification of a genetic locus on chromosome 4q34-35 for type 2 diabetes with overweight. Exp Mol Med [Internet]. 2013;45:e7. [cited 2016 Jan 4]. Available from: http://dx.doi.org/10.1038/emm.2013.5.
  • Chiefari E, Tanyolaç S, Paonessa F, et al. Functional variants of the HMGA1 gene and type 2 diabetes mellitus. JAMA. 2011;305:903–912.
  • Chakarov S, Chakalova L, Tencheva Z, et al. Morphine treatment affects the regulation of high mobility group I-type chromosomal phosphoproteins in C6 glioma cells. Life Sci. 2000;66:1725–1731.
  • Petkova R, Tummala H, Zhelev N. Nothing in excess – lessons learned from the expression of high-mobility group proteins type A in non-cancer and cancer cells. Biotechnol Biotechnol Equip. 2011;25:2572–2575.
  • Netzer N, Gatterer H, Faulhaber M, et al. Hypoxia, oxidative stress and fat. Biomolecules. 2015;5:1143–1150.
  • Chakarov S, Stoilov P, Alexandrov A, et al. Repair pattern in the beta-globin gene cluster of human fibroblasts after ultraviolet irradiation. Eur J Biochem. 1997; 248,669–675.
  • Chakalova L, Russev G. Transcriptionally active and inactive mouse beta-globin gene loci are repaired at similar rates after ultraviolet irradiation. Eur J Biochem. 1999;261:667–673.
  • Marden A, Walmsley RM, Schweizer LM, et al. Yeast-based assay for the measurement of positive and negative influences on microsatellite stability. FEMS Yeast Res. 2006;6:716–725.
  • Chakarov S, Roeva I, Russev G. An experimental model for assessment of global DNA repair capacity. Biotechnol Biotechnol Equip. 2011;25:2505–2507.
  • Damyanova V, Dimova I, Savov A, et al. Comprehensive genomic study in patients with idiopathic azoospermia and oligoasthenoteratozoospermia. Biotechnol Biotechnol Equip. 2013;27:3529–3533.
  • Fiorentino F, Bono S, Biricik A, et al. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod. 2014;29:2802–2813.
  • Damyanova V, Dimitrova-Dikanarova D, Hadjidekova S, et al. Genomic study in patients with idiopathic male infertility. Comptes Rendus Bulgare Acad Sci. 2014;67:283–290.
  • Lukaszuk K, Pukszta S, Ochman K, et al. Healthy baby born to a Robertsonian translocation carrier following next-generation sequencing-based preimplantation genetic diagnosis: a case report. AJP Rep [Internet]. 2015;5:e172–175. [cited 2016 Feb 23].