849
Views
1
CrossRef citations to date
0
Altmetric
Reviews; Medical Biotechnology

The minus of a plus is a minus. Mass death of selected neuron populations in sporadic late-onset neurodegenerative disease may be due to a combination of subtly decreased capacity to repair oxidative DNA damage and increased propensity for damage-related apoptosis

, , &
Pages 623-643 | Received 17 Jan 2016, Accepted 14 Apr 2016, Published online: 09 May 2016

References

  • Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology. 2007;68:384–386.
  • Hebert LE, Weuve J, Scherr PA, et al. Alzheimer disease in the United States (2010–2050) estimated using the 2010 Census. Neurology. 2013;80:1778–1783.
  • Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005;366:2112–2117.
  • von Campenhausen S, Bornschein B, Wick R, et al. Prevalence and incidence of Parkinson's disease in Europe. Eur Neuropsychopharmacol. 2005;15:473–490.
  • Van Den Eeden SK, Tanner CM, Bernstein AL, et al. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am J Epidemiol. 2003;157:1015–1022.
  • Gusella JF, MacDonald ME. Huntington's disease: the case for genetic modifiers. Genome Med [Internet]. 2009 [cited 2016 Jan 15];1:80. Available from: http://dx.doi.org/10.1186/gm80.
  • Zinman L, Liu HN, Sato C, et al. A mechanism for low penetrance in an ALS family with a novel SOD1 deletion. Neurology. 2009;72:1153–1159.
  • Almkvist O, Axelman K, Basun H, et al. Clinical findings in nondemented mutation carriers predisposed to Alzheimer's disease: a model of mild cognitive impairment. Acta Neurol Scand Suppl. 2003;179:77–82.
  • Aasly JO, Shi M, Sossi V, et al. Cerebrospinal fluid amyloid beta and tau in LRRK2 mutation carriers. Neurology. 2012;78:55–61.
  • Snowdon DA, Greiner LH, Mortimer JA, et al. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA. 1997;277:813–817.
  • Gupta A, Iadecola C. Impaired Aβ clearance: a potential link between atherosclerosis and Alzheimer's disease. Front Aging Neurosci [Internet]. 2015 [ cited];7:115. Available from: http://dx.doi.org/10.3389/fnagi.2015.00115.
  • Giannakopoulos P, Hof PR, Mottier S, et al. Neuropathological changes in the cerebral cortex of 1258 cases from a geriatric hospital: retrospective clinicopathological evaluation of a 10-year autopsy population. Acta Neuropathol. 1994;87:456–468.
  • Nelson PT, Braak H, Markesbery WR. Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol. 2009;68:1–14.
  • Cowan WM. Neuronal death as a regulative mechanism in the control of cell number in the nervous system. In: Rockstein M, editor. Development and aging in the nervous system. New York (NY): Academic Press; 1973. p. 19–41.
  • Leuba G, Garey LJ. Evolution of neuronal numerical density in the developing and aging human visual cortex. Hum Neurobiol. 1987;6:11–18.
  • Raveh-Amit H, Berzsenyi S, Vas V, et al. Tissue resident stem cells: till death do us part. Biogerontology. 2013;14:573–590.
  • Chakarov S, Petkova R, Pankov R. Stvolovi kletki [Stem cells]. 2nd ed. Sofia: Prof. Marin Drinov Academic Publishing House; 2014. Chapter 2, Biologia na stvolovite kletki [Stem cell biology]; p. 39–140. Bulgarian.
  • Abitz M, Nielsen RD, Jones EG, et al. Excess of neurons in the human newborn mediodorsal thalamus compared with that of the adult. Cereb Cortex. 2007;17:2573–2578.
  • Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16:2027–2033.
  • Simić G, Kostović; I, Winblad B, et al. Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer's disease. J Comp Neurol. 1997;379:482–494.
  • West MJ, Kawas CH, Stewart WF, et al. Hippocampal neurons in pre-clinical Alzheimer's disease. Neurobiol Aging. 2004;25:1205–1212.
  • Eckenhoff MF, Rakic P. Nature and fate of proliferative cells in the hippocampal dentate gyrus during the life span of the rhesus monkey. J Neurosci. 1988;8:2729–2747.
  • Doetsch F, Caille I, Lim DA, et al. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell. 1999;97:703–716.
  • Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol. 2001;435:406–417.
  • Bedard A, Parent A. Evidence of newly generated neurons in the human olfactory bulb. Brain Res Dev Brain Res. 2004;151:159–168.
  • Ponti G, Peretto B, Bonfanti L. Genesis of neuronal and glial progenitors in the cerebellar cortex of peripuberal and adult rabbits. PLoS One [Internet]. 2008 [cited 2016 Jan 15];3:e2366. Available from: http://dx.doi.org/10.1371/journal.pone.0002366.
  • Larsen CC, Bonde Larsen K, Bogdanovic N, et al. Total number of cells in the human newborn telencephalic wall. Neuroscience. 2006;139:999–1003.
  • Doetsch F. The glial identity of neural stem cells. Nat Neurosci. 2003;6:1127–1134.
  • Uchida N, Buck DW, He D, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97:14720–14725.
  • Bracko O, Singer T, Aigner S, et al. Gene expression profiling of neural stem cells and their neuronal progeny reveals IGF2 as a regulator of adult hippocampal neurogenesis. J Neurosci. 2012;32:3376–3387.
  • Macas J, Nern C, Plate KH, et al. Increased generation of neuronal progenitors after ischemic injury in the aged adult human forebrain. J Neurosci. 2006;26:13114–13119.
  • Zhao M, Momma S, Delfani K, et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A. 2003;100:7925–7930.
  • Shan X, Chi L, Bishop M, et al. Enhanced de novo neurogenesis and dopaminergic neurogenesis in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease-like mice. Stem Cells. 2006;24:1280–1287.
  • Chi L, Ke Y, Luo C, et al. Motor neuron degeneration promotes neural progenitor cell proliferation, migration, and neurogenesis in the spinal cords of amyotrophic lateral sclerosis mice. Stem Cells. 2006;24:34–43.
  • Yu Y, He J, Zhang Y, et al. Increased hippocampal neurogenesis in the progressive stage of Alzheimer's disease phenotype in an APP/PS1 double transgenic mouse model. Hippocampus. 2009;19:1247–1253.
  • Rodríguez JJ, Jones VC, Verkhratsky A. Impaired cell proliferation in the subventricular zone in an Alzheimer's disease model. Neuroreport. 2009;20:907–912.
  • Demars M, Hu YS, Gadadhar A, et al. Impaired neurogenesis is an early event in the etiology of familial Alzheimer's disease in transgenic mice. J Neurosci Res. 2010;88:2103–2117.
  • Jin K, Peel AL, Mao XO, et al. Increased hippocampal neurogenesis in Alzheimer's disease. Proc Natl Acad Sci U S A. 2004;101:343–347.
  • Zekanowski C, Wojda U. Aneuploidy, chromosomal missegregation, and cell cycle reentry in Alzheimer's disease. Acta Neurobiol Exp (Wars). 2009;69:232–253.
  • Duff K, McCaffrey RJ, Solomon GS. The Pocket Smell Test: successfully discriminating probable Alzheimer's dementia from vascular dementia and major depression. J Neuropsychiatry Clin Neurosci. 2002;14:197–201.
  • Pardini M, Huey ED, Cavanagh AL, et al. Olfactory function in corticobasal syndrome and frontotemporal dementia. Arch Neurol. 2009;66:92–96.
  • Doty RL. Olfactory dysfunction in Parkinson disease. Nat Rev Neurol. 2012;8:329–339.
  • Ohm TG, Braak H. Olfactory bulb changes in Alzheimer's disease. Acta Neuropathol. 1987;73:365–369.
  • Chen S, Tan HY, Wu ZH, et al. Imaging of olfactory bulb and gray matter volumes in brain areas associated with olfactory function in patients with Parkinson's disease and multiple system atrophy. Eur J Radiol. 2014;83:564–570.
  • Yang Y, Geldmacher DS, Herrup K. DNA replication precedes neuronal cell death in Alzheimer's disease. J Neurosci. 2001;21:2661–2668.
  • Jordan-Sciutto KL, Dorsey R, Chalovich EM, et al. Expression patterns of retinoblastoma protein in Parkinson disease. J Neuropathol Exp Neurol. 2003;62:68–74.
  • Ranganathan S, Bowser R. Alterations in G(1) to S phase cell-cycle regulators during amyotrophic lateral sclerosis. Am J Pathol. 2003;162:823–835.
  • Lopes JP, Oliveira CR, Agostinho P. Cell cycle re-entry in Alzheimer's disease: a major neuropathological characteristic? Curr Alzheimer Res. 2009;6:205–212.
  • Hradek AC, Lee HP, Siedlak SL, et al. Distinct chronology of neuronal cell cycle re-entry and tau pathology in the 3xTg-AD mouse model and Alzheimer's disease patients. J Alzheimers Dis. 2015;43:57–65.
  • Silva AR, Santos AC, Farfel JM, et al. Repair of oxidative DNA damage, cell-cycle regulation and neuronal death may influence the clinical manifestation of Alzheimer's disease. PLoS One [Internet]. 2014 [cited 2016 Jan 15];9:e99897. Available from: http://dx.doi.org/10.1371/journal.pone.0099897
  • Ishihara Y, Itoh K, Mitsuda Y, et al. Involvement of brain oxidation in the cognitive impairment in a triple transgenic mouse model of Alzheimer's disease: noninvasive measurement of the brain redox state by magnetic resonance imaging. Free Radic Res. 2013;47:731–739.
  • Matsumura A, Emoto MC, Suzuki S, et al. Evaluation of oxidative stress in the brain of a transgenic mouse model of Alzheimer disease by in vivo electron paramagnetic resonance imaging. Free Radic Biol Med. 2015;85:165–173.
  • Mecocci P, MacGarvey U, Beal MF. Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Ann Neurol. 1994;36:747–751.
  • Wang J, Xiong S, Xie C, et al. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease. J Neurochem. 2005;93:953–962.
  • Necchi D, Pinto A, Tillhon M, et al. Defective DNA repair and increased chromatin binding of DNA repair factors in Down syndrome fibroblasts. Mutat Res. 2015;780:15–23.
  • Yamaguchi H, Kajitani K, Dan Y, et al. MTH1, an oxidized purine nucleoside triphosphatase, protects the dopamine neurons from oxidative damage in nucleic acids caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Cell Death Differ. 2006;13:551–563.
  • Nakabeppu Y, Tsuchimoto D, Yamaguchi H, et al. Oxidative damage in nucleic acids and Parkinson's disease. J Neurosci Res. 2007;85:919–934.
  • Cardozo-Pelaez F, Sanchez-Contreras M, Nevin AB. Ogg1 null mice exhibit age-associated loss of the nigrostriatal pathway and increased sensitivity to MPTP. Neurochem Int. 2012;61:721–730.
  • Kovtun IV, Liu Y, Bjoras M, et al. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature. 2007;447:447–452.
  • Alam ZI, Jenner A, Daniel SE, et al. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem. 1997;69:1196–1203.
  • Shimura-Miura H, Hattori N, Kang D, et al. Increased 8-oxo-dGTPase in the mitochondria of substantia nigral neurons in Parkinson's disease. Ann Neurol. 1999;46:920–924.
  • Fukae J, Takanashi M, Kubo S, et al. Expression of 8-oxoguanine DNA glycosylase (OGG1) in Parkinson's disease and related neurodegenerative disorders. Acta Neuropathol. 2005;109:256–262.
  • Arai T, Fukae J, Hatano T, et al. Up-regulation of hMUTYH, a DNA repair enzyme, in the mitochondria of substantia nigra in Parkinson's disease.Acta Neuropathol. 2006;112:139–145.
  • Chehab NH, Malikzay A, Appel M, et al. Chk2/hCds1 functions as a DNA damage checkpoint in G-1 by stabilising p53. Genes Dev. 2000;14:278–288.
  • Paull TT, Rogakou EP, Yamazaki V, et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 2000;10:886–895.
  • Younes-Mhenni S, Frih-Ayed M, Kerkeni A, et al. Peripheral blood markers of oxidative stress in Parkinson's disease. Eur Neurol. 2007;58:78–83.
  • Zivković L, Spremo-Potparević; B, Siedlak SL, et al. DNA damage in Alzheimer disease lymphocytes and its relation to premature centromere division. Neurodegener Dis. 2013;12:156–163.
  • Mellon I, Bhor VA, Hanawalt PC. Preferential repair of an active gene in human cells. Proc Natl Acad Sci U S A. 1986;83:8878–8882.
  • Hu W, Feng Z, Chasin LA, et al. Transcription-coupled and transcription-independent repair of cyclobutane pyrimidine dimers in the dihydrofolate reductase gene. J Biol Chem. 2002;277:38305–38310.
  • Niida H, Nakanishi M. DNA damage checkpoints in mammals. Mutagenesis. 2006;21:3–9.
  • Nouspikel T, Hanawalt PC. DNA repair in terminally differentiated cells. DNA Repair (Amst). 2002;1:59–75.
  • Nouspikel T. DNA repair in mammalian cells: Nucleotide excision repair: variations on versatility. Cell Mol Life Sci. 2009;66:994–1009.
  • Nouspikel TP, Hyka-Nouspikel N, Hanawalt PC. Transcription domain-associated repair in human cells. Mol Cell Biol. 2006;6:8722–8730.
  • Hyka-Nouspikel N, Lemonidis K, Lu WT, et al. Circulating human B lymphocytes are deficient in nucleotide excision repair and accumulate mutations upon proliferation. Blood. 2011;117,6277–86.
  • Bauer M, Goldstein M, Christmann M, et al. Human monocytes are severely impaired in base and DNA double-strand break repair that renders them vulnerable to oxidative stress. Proc Natl Acad Sci U S A. 2011;108:21105–21110.
  • Bauer M, Goldstein M, Heylmann D, et al. Human monocytes undergo excessive apoptosis following temozolomide activating the ATM/ATR pathway while dendritic cells and macrophages are resistant. PLoS One. 2012;7:e39956.
  • Valledor AF, Comalada M, Santamaría-Babi LF, et al. Macrophage proinflammatory activation and deactivation: a question of balance. Adv Immunol. 2010;108:1–20.
  • Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993;362:709–715.
  • Akomolafe A, Beiser A, Meigs JB, et al. Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham Study. Arch Neurol. 2006;63:1551–1555.
  • Pasquier F, Boulogne A, Leys D, et al. Diabetes mellitus and dementia. Diabetes Metab. 2006;32:403–414.
  • Chen J, Li S, Sun W, Li J. Anti-diabetes drug pioglitazone ameliorates synaptic defects in AD transgenic mice by inhibiting cyclin-dependent kinase5 activity. PLoS One [Internet]. 2015 [cited 2016 Jan 15];10:e0123864. Available from: http://dx.doi.org/10.1371/journal.pone.0123864
  • Raber J, Huang Y, Ashford JW. ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiol Aging. 2004;25:641–650.
  • Seidl R, Bidmon B, Bajo M, et al. Evidence for apoptosis in the fetal Down syndrome brain. J Child Neurol. 2001;16:438–442.
  • Seidl R, Fang-Kircher S, Bidmon B, et al. Apoptosis-associated proteins p53 and APO-1/Fas (CD95) in brains of adult patients with Down syndrome. Neurosci Lett. 1999;260:9–12.
  • Chihara T, Kitabayashi A, Morimoto M, et al. Caspase inhibition in select olfactory neurons restores innate attraction behavior in aged Drosophila. PLoS Genet [Internet]. 2014 [cited 2016 Jan 15];10:e1004437. Available from: http://dx.doi.org/10.1371/journal.pgen.1004437.
  • Beal MF. Mechanisms of excitotoxicity in neurologic diseases. FASEB J. 1992;6:3338–3344.
  • Palmer GC. Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies. Curr Drug Targ. 2001;2:241–271.
  • Ikonomidou C, Turski L. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 2002;1:383–386.
  • Tovar KR, Westbrook GL, The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci. 1999;19:4180–4188.
  • Harris AZ, Pettit DL. Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices. J Physiol. 2007;584:509–519.
  • Goula AV, Berquist BR, Wilson DM 3rd, et al. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice. PLoS Genet [Internet]. 2009 [cited 2016 Jan 15];5:e1000749. Available from: http://dx.doi.org/10.1371/journal.pgen.1000749.
  • Lokanga RA, Senejani AG, Sweasy JB, et al. Heterozygosity for a hypomorphic Polβ mutation reduces the expansion frequency in a mouse model of the Fragile X-related disorders. PLoS Genet [Internet]. 2015 [cited 2016 Jan 15];11:e1005181. Available from: http://dx.doi.org/10.1371/journal.pgen.1005181.
  • Ehrnhoefer DE, Skotte NH, Ladha S, et al. p53 increases caspase-6 expression and activation in muscle tissue expressing mutant Huntingtin. Hum Mol Genet. 2014;23:717–729.
  • Martin LJ, Chen K, Liu Z. Adult motor neuron apoptosis is mediated by nitric oxide and Fas death receptor linked by DNA damage and p53 activation. J Neurosci. 2005;25:6449–6459.
  • Roe CM, Behrens MI, Xiong C, et al. Alzheimer disease and cancer. Neurology. 2005;64:895–898.
  • Roe CM, Fitzpatrick AL, Xiong C, et al. Cancer linked to Alzheimer disease but not vascular dementia. Neurology. 2010;74:106–112.
  • Tabarés-Seisdedos R, Dumont N, Baudot A, et al. No paradox, no progress: inverse cancer comorbidity in people with other complex diseases. Lancet Oncol. 2011;12:604–608.
  • Shi HB, Tang B, Liu YW, et al. Alzheimer disease and cancer risk: a meta-analysis. J Cancer Res Clin Oncol. 2015;141:485–494.
  • Catalá-López F, Suárez-Pinilla M, Suárez-Pinilla P, et al. Inverse and direct cancer comorbidity in people with central nervous system disorders: a meta-analysis of cancer incidence in 577,013 participants of 50 observational studies. Psychother Psychosom. 2014;83:89–105.
  • Driver JA. Inverse association between cancer and neurodegenerative disease: review of the epidemiologic and biological evidence. Biogerontology. 2014;15:547–557.
  • Chakarov S, Petkova R, Zhelev N, et al. DNA repair and carcinogenesis. In: Lane DP, editor. DNA repair and individual repair capacity. Dundee: Dundee Science Press; 2014. p. 471–518.
  • Driver JA, Logroscino G, Buring JE, et al. A prospective cohort study of cancer incidence following the diagnosis of Parkinson's disease. Cancer Epidemiol Biomark Prev. 2007;16:1260–1265.
  • Inzelberg R, Jankovic J. Are Parkinson disease patients protected from some but not all cancers? Neurology. 2007;69:1542–1550.
  • Hasle H. Pattern of malignant disorders in individuals with Down's syndrome. Lancet Oncol. 2001;2:429–436.
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 1997;3:730–737.
  • Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–3988.
  • Schatton T, Murphy GF, Frank NY, et al. Identification of cells initiating human melanomas. Nature. 2008;451:345–349.
  • Petkova R, Chelenkova P, Georgieva E, et al. What's your poison? Impact of individual repair capacity on the outcomes of genotoxic therapies in cancer. Part II – information content and validity of biomarkers for individual repair capacity in the assessment of outcomes of anticancer therapy. Biotechnol Biotechnol Equip. 2014;28:2–7.
  • Agardh CD, Zhang H, Smith ML, et al. Free radical production and ischemic brain damage: influence of postischemic oxygen tension. Int J Dev Neurosci. 1991;9:127–138.
  • Chen H, Yoshioka H, Kim GS, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal. 2011;14:1505–1517.
  • Luo Y, Ji X, Ling F, et al. Impaired DNA repair via the base-excision repair pathway after focal ischemic brain injury: a protein phosphorylation-dependent mechanism reversed by hypothermic neuroprotection. Front Biosci. 2007;12:1852–1862.
  • Chelenkova P, Petkova R, Chamova T, et al. Homozygous carriership of the wildtype allele of the XPCins83 polymorphism is an independent protective factor against cerebrovascular incidents in the Bulgarian population. Compt Rend Acad Bulg Sci. 2014;67:263–268.
  • Ghosh S, Canugovi C, Yoon JS, et al. Partial loss of the DNA repair scaffolding protein, Xrcc1, results in increased brain damage and reduced recovery from ischemic stroke in mice. Neurobiol Aging. 2015;36:2319–2330.
  • Prelli F, Castaño E, Glenner GG, et al. Differences between vascular and plaque core amyloid in Alzheimer's disease. J Neurochem. 1988;51:648–651.
  • Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40:405–412.
  • Vartanian V, Lowell B, Minko IG, et al. The metabolic syndrome resulting from a knockout of the NEIL1 DNA glycosylase. Proc Natl Acad Sci USA. 2006;103:1864–1869.
  • Park MH, Kwak SH, Kim KJ, et al. Identification of a genetic locus on chromosome 4q34-35 for type 2 diabetes with overweight. Exp Mol Med [Internet]. 2013 [cited 2016 Jan 15];45:e7. Available from: http://dx.doi.org/10.1038/emm.2013.5.
  • Chakarov S, Petkova R, Russev GCh. Individual capacity for detoxification of genotoxic compounds and repair of DNA damage. Commonly used methods for assessment of capacity for DNA repair. Biodiscovery [Internet]. 2014 [cited 2016 Jan 15];11:2. Available from: http://dx.doi.org/10.7750/BioDiscovery.2014.11.2.
  • Petkova R, Chelenkova P, Georgieva E, et al. What's your poison? Impact of individual repair capacity on the outcomes of genotoxic therapies in cancer. Part I – role of individual repair capacity in the constitution of risk for late-onset multifactorial disease. Biotechnol Biotechnol Equip. 2013;27:4208–4216.
  • Sykora P, Misiak M, Wang Y, et al. DNA polymerase β deficiency leads to neurodegeneration and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res. 2015;43:943–959.
  • Wilson DM 3rd, McNeill DR. Base excision repair and the central nervous system. Neuroscience. 2007;145:1187–1200.
  • Coppedè F, Mancuso M, Lo Gerfo A, et al. A Ser326Cys polymorphism in the DNA repair gene hOGG1 is not associated with sporadic Alzheimer's disease. Neurosci Lett. 2007;414:282–285.
  • Parildar-Karpuzoğlu H, Doğru-Abbasoğlu S, Hanagasi HA, et al. Single nucleotide polymorphisms in base-excision repair genes hOGG1, APE1 and XRCC1 do not alter risk of Alzheimer's disease. Neurosci Lett. 2008;442:287–291.
  • Gencer M, Dasdemir S, Cakmakoglu B, et al. DNA repair genes in Parkinson's disease. Genet Test Mol Biomark. 2012;16:504–507.
  • Kohno T, Shinmura K, Tosaka M, et al. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene. 1998;16:3219–3225.
  • Coppedè F, Mancuso M, Lo Gerfo A, et al. Association of the hOGG1 Ser326Cys polymorphism with sporadic amyotrophic lateral sclerosis. Neurosci Lett. 2007;420:163–168.
  • Coppedè F, Lo Gerfo A, Carlesi C, et al. Lack of association between the APEX1 Asp148Glu polymorphism and sporadic amyotrophic lateral sclerosis. Neurobiol Aging. 2010;31:353–355.
  • Zhang H, Xu Y, Zhang Z, et al. The hOGG1 Ser326Cys polymorphism and prostate cancer risk: a meta-analysis of 2584 cases and 3234 controls. BMC Cancer [Internet]. 2011 [cited 2016 Jan 15];11:391. Available from: http://dx.doi.org/10.1186/1471-2407-11-391.
  • Zhang Y, Zhang L, Song Z, et al. Genetic polymorphisms in DNA repair genes OGG1, APE1, XRCC1, and XPD and the risk of age-related cataract. Ophthalmology. 2012;119:900–906.
  • Jing B, Wang J, Chang WL, et al. Association of the polymorphism of APE1 gene with the risk of prostate cancer in Chinese Han population. Clin Lab. 2013;59:163–168.
  • Li Q, Huang L, Rong L, et al. hOGG1 Ser326Cys polymorphism and risk of childhood acute lymphoblastic leukemia in a Chinese population. Cancer Sci. 2011;102:1123–1127.
  • Thomas M, Kalita A, Labrecque S, et al. Two polymorphic variants of wild-type p53 differ biochemically and biologically. Molec Cell Biol. 1999;19:1092–1100.
  • Chakarov S, Petkova R, Russev GCh. p53 – guardian angel and archangel. Biotechnol Biotechnol Eq. 2012;26:2695–2702.
  • Khalil HS, Chakarov S, Zhelev N. Ataxia-telangiectasia mutated (ATM). In: Lane DP, editor. ATM, a damage sensor and cancer target. Dundee: Dundee Science Press; 2014. p. 10–19.
  • Ara S, Lee PSY, Hansen MF, et al. Codon 72 polymorphism of the TP53 gene. Nucleic Acids Res. 1990;18:4961.
  • Ibáñez K, Boullosa C, Tabarés-Seisdedos R, et al. Molecular evidence for the inverse comorbidity between central nervous system disorders and cancers detected by transcriptomic meta-analyses. PLoS Genet [Internet]. 2014 [cited 2016 Jan 15];10:e1004173. Available from: http://dx.doi.org/10.1371/journal.pone.0123864.
  • Rosenmann H, Meiner Z, Kahana E, et al. An association study of the codon 72 polymorphism in the pro-apoptotic gene p53 and Alzheimer's disease. Neurosci Lett. 2003;340:29–32.
  • Scacchi R, Gambina G, Moretto G, et al. Association study between P53 and P73 gene polymorphisms and the sporadic late-onset form of Alzheimer's disease. J Neural Transm. 2009;116:1179–1184.
  • Ørsted DD, Bojesen SE, Tybjaerg-Hansen A, et al. Tumor suppressor p53 Arg72Pro polymorphism and longevity, cancer survival, and risk of cancer in the general population. J Exp Med. 2007;204:1295–1301.
  • Bojesen SE, Nordestgaard BG. The common germline Arg72Pro polymorphism of p53 and increased longevity in humans. Cell Cycle. 2008;7:158–163.