2,137
Views
10
CrossRef citations to date
0
Altmetric
Articles; Agriculture and Environmental Biotechnology

Identification of molecular markers linked to Fusarium ear rot genes in maize plants Zea mays L

, &
Pages 692-699 | Received 01 Oct 2015, Accepted 20 Apr 2016, Published online: 13 Jul 2016

References

  • Cai H., Maize. In: Kole C, editor. Genome mapping and molecular breeding in plants. Vol. 1, Cereals and millets. Berlin/Heidelberg: Springer-Verlag; 2006. p. 135–153.
  • Food and Agriculture Organization of the United Nations. FAOSTAT database. Rome: FAO; 2014. Available from: http://faostat.Fao.org.
  • Maschietto V, Lanubile A, Marocco A. Mapping candidate genes for Fusarium ear rot resistance. Maize Genet Coop Newslett. 2011;85:1–2.
  • Costa RS, Môro FV, Môro JR, et al. Relationship between caryopsis morphological characteristics and Fusarium ear rot in corn. Pesq Agropec Bras. 2003;38(1):27–33.
  • Richard JL. Some major mycotoxins and their mycotoxicoses – an overview. Int J Food Microbiol. 2007;119(1–2):3–10.
  • Hung HJ, Holland B. Diallel analysis of resistance to Fusarium ear rot and fumonisin contamination in maize. Crop Sci. 2012;52(5):2173–2181.
  • Röder MS, Korzum V, Wendehake KJ. A microsatellite map of wheat. Genetics. 1998;149:2007–2023.
  • Clements MJ, Maragos CM, Pataky JK, et al. Sources of resistance to fumonisin accumulation in grain and Fusarium ear and kernel rot of corn. Phytopathology. 2004;94:251–260.
  • Collard BCY, Jahufer MZZ, Brouwer JB, et al. An introduction to markers quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica. 2005;142(1–2):169–196.
  • Ding JQ, Wang XM, Chander S, et al. QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Mol Breed. 2008;22(3):395–403.
  • Rey JI, Cerono J, Lu'quez J. Identification of quantitative trait loci for resistat to maize ear rot caused by fusarium moniliforme Sheldon and common rust caused by Pucciniasorghi in Argentinian maize germplasm. Rev Fac Agron La Plata. 2009;108(1):1–8.
  • VanOpdorp NJ. Predicted QTL locations for fusarium ear rot (FER) resistance in maize and the generation of improved FER resistant maize inbred lines [dissertation]. West Lafayette (IN): Purdue University; 2009. Available from: http://docs.lib.purdue.edu/dissertations/AAI1469941/.
  • Xiang KL, Reid M, Zhang ZM, et al. Characterization of correlation between grain moisture and ear rot resistance in maize by QTL met analysis. Euphytica. 2012;183:185–195.
  • Yang Q, Yi GM, Guo YL, et al. A major QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet. 2010;121:673–687.
  • Li Z, Ding J, Wang R,et al. A new QTL for resistance to Fusarium ear rot in maize. J Appl Genet. 2011;52(4):403–406.
  • Chen J, Ding J, Li H, et al. Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Mol Breed. 2012;30(4):1649–1656.
  • Zila CT, Samayoa LF, Santiago R, et al. A genome-wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. Genes Genomes Genet. 2013;3(11):2095–2104.
  • Jenkis MT, Robert AL. Evaluating the breeding potential of inbred lines of corn resistant to the leaf blight caused by Helminthosporium turcicum. Agron J. 1959;51:93–95.
  • Senior ML, Murphy JP, Goodman MM, et al. Utility of SSRs for determining similarities and relationships in maize using an agarose gel system Crop Sci. 1998;38(4):1088–1098.
  • Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–15.
  • Kozhukhova NE, Sivolap YM, Varenyk BF. Marking loci responsible for resistance of maize to Fusarium rot. Cytol Genet. 2007;41(2):98–102.
  • Melchinger AE. Genetic diversity and heterosis. In: Coors JG, Pandey S, editors. Genetics and exploitation of heterosis in crops. Madison (WI): ASA/CSSA/SSSA; 1999. p. 99–118.
  • Michelomore RW, Paran I, Kesseli RV. Identification of markers linked to disease- resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomics regions by using segregating populations. Proc Natl Acad Sci U S A. 1991;88:9828–9852.
  • Meer J, Robert H, Cand F, et al. Map manager version 0.22. 2002. Available from: http://manager.roswellpark.org/mmQTX.html
  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, et al. Ribosomal DNA spacer-length polymorphism in barely: Mendelian inheritance chromosomal location and population dynamics. Proc Natl Acad Sci U S A. 1984;81(24):8014–8018.
  • Kanagarasu S, Nallathambi G, Ganesan KN, et al. Determination of genetic polymorphism among indigenous and exotic maize inbreds using microsatellite markers. Afr J Biotechnol. 2013;12(39):5723–5728.
  • Xu J, Liu L, Xu Y, et al. Development and characterization of simple sequence repeat markers providing genome-wide coverage and high resolution in maize. DNA Res. 2013; 20(520):497–509.
  • Nikhou F, Ebrahimi A, Shiri M. Genetic diversity assessment among maize hybrids using SSR markers. Tech J Eng Appl Sci. 2013;13:3831–3834.
  • Zhao Y, Mette MF, Gowada M, et al. Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity. 2014;112(6):638–645.
  • Lanubile A, Ferrarini A, Maschietto V, et al. Functional genomic analysis of constitutive and inducible defense responses to Fusarium verticillioides infection in maize genotypes with contrasting ear rot resistance. BMC Genomics. 2014;15(1):710–725.
  • Fernando F, Alvarez C, William M, et al. Genetic mapping of QTLfor maize weevil resistance in a RIL population of tropical maize. Theor Appl Genet. 2015;128:411–419.
  • Liu XH, Zhenh ZP, Tan ZB, et al. Quantitative trait locus (QTL) mapping for 100-kernel weight of maize (Zea mays L.) under different nitrogen regimes. Afr J Biotechnol. 2012;9(49):8283–8289.
  • Nikolic' V, Andjelkovic' D, Dodig S, et al. Identification of QTLs for drought tolerance in maize, II: yield and yield components. Genetika. 2013;45(2):335–341.
  • Jambhulkar NN. QTL identification in presence of QTL x environment interaction. Int J Comput Eng Manag. 2012;15:89–94.
  • LiuY, Wang L, Sun C, et al. Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet. 2014;127(5):109–1037.
  • Zhang Z, Ober U, Erbe M, et al. Improving the accuracy of whole genome prediction for complex traits using the results of genome wide association studies. Plos One. 2014;9:93017. doi:10.1371