3,996
Views
27
CrossRef citations to date
0
Altmetric
Articles; Agriculture and Environmental Biotechnology

Agrobacterium rhizogenes-mediated transformation of Arachis hypogaea: an efficient tool for functional study of genes

, , , , , & show all
Pages 869-878 | Received 15 Oct 2015, Accepted 17 May 2016, Published online: 06 Jul 2016

References

  • Wan XR , Li L . Regulation of ABA level and water-stress tolerance of Arabidopsis by ectopic expression of a peanut 9-cisepoxycarotenoid dioxygenase gene. Biochem Bioph Res Co. 2006;347(4):1030–1038.
  • Huang L , Jiang HF , Ren XP , et al. Abundant microsatellite diversity and oil content in wild Arachis species. PLoS ONE [Internet]. 2012 [cited 2015 Jun 10];7(11):e50002. Available from: http://dx.doi.org/10.1371/journal.pone.0050002.
  • Taylor CG , Fuchs B , Collier R , et al. Generation of composite plants using Agrobacterium rhizogenes . Methods Mol Biol. 2006;343:155–167.
  • Somers DA , Samac DA , Olhoft PM . Recent advances in legume transformation. Plant Physiol. 2003;131(3):892–899.
  • Estrada-Navarrete G , Alvarado-Affantranger X , Olivares JE , et al. Agrobacterium rhizogenes transformation of the Phaseolus spp.: a tool for functional genomics. Mol Plant Microbe Interact. 2006;19(12):1385–1393.
  • Chilton MD , Tepfer DA , Petit A , et al. Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature . 1982;295:432–434.
  • Christey MC . Use of Ri mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant. 2001;37:687–700.
  • Collier R , Fuchs B , Walter N , et al. Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J. 2005;43(3):449–457.
  • Chabaud M , Boisson-Dernier A , Zhang J , et al. Agrobacterium rhizogenes-mediated root transformation. In: Mathesius U , Journet EP , Sumner LW , editors. Medicago truncatula handbook. 1st ed. Vol 1. Ardmore ( OK) : Samuel Roberts Noble Foundation; 2006.
  • Kereszt A , Li D , Indrasumunar A , et al. Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc. 2007;2:948–952.
  • Cho HJ , Farrand SK , Noel GR . High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta. 2000;210:195–204.
  • Cao D , Hou W , Song S , et al. Assessment of conditions affecting Agrobacterium rhizogenes-mediated transformation of soybean. Plant Cell Tiss Org Cult. 2009;96:45–52.
  • Georgiev M , Pavlov A , Bley T . Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biot. 2007;74:1175–1185.
  • Shi H , Long Y , Sun T , et al. Induction of hairy roots and plant regeneration from the medicinal plant Pogostemon cablin . Cell Tiss Organ Cult. 2011;107:251–260.
  • Ishida JK , Yoshida S , Ito M , et al. Agrobacterium rhizogenes-mediated transformation of the parasitic plant Phtheirospermum japonicum . PLoS ONE [Internet]. 2011 [cited 2015 Jun 10]; 6(10):e25802. Available from: http://dx.doi.org/10.1371/journal.pone.0025802.
  • Hao YJ , Wei W , Song QX , et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J. 2011;68:302–313.
  • Liu YF , Li QT , Lu X , et al. Soybean GmMYB73 promotes lipid accumulation in transgenic plants. BMC Plant Biol [Internet]. 2014 [cited 2015 Jun 10]; 14:73. Available from: http://dx.doi.org/10.1186/1471-2229-14-73.
  • Akasaka Y , Mii M , Daimon H . Morphological alterations and root nodule formation in Agrobacterium rhizogenes-mediated transgenic hairy roots of peanut (Arachis hypogaea L.). Ann Bot. 1998;81:355–362.
  • Kim JS , Lee SY , Park SU . Resveratrol production in hairy root culture of peanut, Arachis hypogaea L. transformed with different Agrobacterium rhizogenes strains. Afr J Biotechnol. 2008;7:3788–3790.
  • Tao J , Li L . Genetic transformation of Torenia fournieri L. mediated by Agrobacterium rhizogenes . S Afr J Bot. 2006;72:211–216.
  • Barik DP , Mohapatra U , Chand PK . Transgenic grasspea (Lathyrus sativus L.): factors influencing Agrobacterium-mediated transformation and regeneration. Plant Cell Rep. 2005;24(9):523–531.
  • Fujita Y , Fujita M , Satoh R , et al. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell. 2005;17:3470–3488.
  • Li XY , Liu X , Yao Y , et al. Overexpression of Arachis hypogaea AREB1 gene enhances drought tolerance by modulating ROS scavenging and maintaining endogenous ABA content. Int J Mol Sci. 2013;14:12827–12842.
  • Yoshida T , Fujita Y , Sayama H , et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 2010;61:672–685.
  • Li XY , Lu JB , Liu S , et al. Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid. BMC Biotechnol [Internet]. 2014 [cited 2015 Jun 10];14:58. Available from: http://dx.doi.org/10.1186/1472-6750-14-58.
  • Su LC , Liu X , Chen YP , et al. Isolation of AhDHNs from Arachis hypogaea L. and evaluation of AhDHNs expression under exogenous abscisic acid (ABA) and water stress. Afr J Biotechnol. 2012;11(51):11221–11229.
  • Murashige T , Skoog F . A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plantarum. 1962;15:473–497.
  • Sambrook J , Fritsch EF , Maniatis T . Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor ( NY ): Cold Spring Harbor Laboratory; 1989.
  • Edward K , Johnstone C , Thompson C . A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 1991;19:1349.
  • Livak KJ , Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–408.
  • Ilina EL , Logachov AA , Laplaze L , et al. Composite Cucurbita pepo plants with transgenic roots as a tool to study root development. Ann Bot. 2012;110:479–489.
  • Crane C , Wright E , Dixon RA , et al. Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens transformed roots and Agrobacterium rhizogenes-transformed hairy roots. Planta. 2006;223(6):1344–1354.
  • Orlikowska TK , Cranston HJ , Dyer WE . Factors inflencing Agrobacterium tumefaciens-mediated transformation and regeneration of the safflower cultivar ‘Centennial’. Plant Cell. 1995;40(1):85–91.
  • Sreeramanan S , Vinod B , Sashi S , et al. Optimization of the transient Gus a gene transfer of Phalaenopsis Violacea orchid via Agrobacterium tumefaciens: an assessment of factors inflencing the effiency of gene transfer mechanisms. Adv Nat Appl Sci. 2008;2(2):77–88.
  • Kumar V , Jones B , Davey MR . Transformation by Agrobacterium rhizogenes and regeneration of transgenic shoots of the wild soybean Glycine argyrea . Plant Cell Rep. 1991;10:135–138.
  • Karthikeyan AS , Sarma KS , Veluthambi K . Agrobacterium tumefaciens mediated transformation of Vigna mungo (L.) Hepper . Plant Cell Rep. 1996;15:328–331.
  • Price AH , Atherton NM , Hendry GAF . Plants under drought-stress generate activated oxygen . Free Rad Res Comms. 1989;8:61–66.
  • Gill SS , Tuteja N . Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48:909–930.
  • Kim JS , Lee SY , Park SU . Resveratrol production in hairy root culture of peanut, Arachis hypogaea L. transformed with different Agrobacterium rhizogenes strains. Afr J Biotechnol. 2008;7:3788–3790.
  • Geng LL , Niu LH , Gresshoff PM , et al. Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants in peanut (Arachis hypogaea L.). Plant Cell Tiss Organ Cult. 2012;9:491–500.