2,866
Views
11
CrossRef citations to date
0
Altmetric
Articles; Medical Biotechnology

Evaluation of cytotoxicity and gelatinases activity in 3T3 fibroblast cell by root repair materials

, , , , , & show all
Pages 984-990 | Received 29 Oct 2015, Accepted 19 May 2016, Published online: 16 Jun 2016

References

  • Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod. 1999;25:197–205.
  • Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review-part II: leakage and biocompatibility. J Endod. 2010;36:190–202.
  • Bodanezi A, Carvalho N, Silva D, et al. Immediate and delayed solubility of mineral trioxide aggregate and Portland cement. J Appl Oral Sci. 2008;16:127–131.
  • Zapf AM, Chedella SCV, Berzins DW. Effect of additives on mineral trioxide aggregate setting reaction product formation. J Endod. 2015;41:88–91.
  • Berger T, Baratz AZ, Gutmann JL. In vitro investigations into the etiology of mineral trioxide tooth staining. J Conserv Dent. 2014;17:526–530.
  • Jefferies SR. Bioactive and biomimetic restorative materials: a comprehensive review. Part I. J Esthet Restor Dent. 2014;26:14–26.
  • Ribeiro DA, Matsumoto MA, Duarte MA, et al. In vitro biocompatibility tests of two commercial types of mineral trioxide aggregate. Braz Oral Res. 2005;19:183–187.
  • Kasugai S, Hasegawa N, Ogura H. A simple in vitro cytotoxicity test using the MTT (3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) colorimetric assay: analysis of eugenol toxicity on dental pulp cells (RPC-C2A). Japan J Pharmacol. 1990;52:95–100.
  • Silva EJ, Accorsi-Mendonça T, Almeida JF, et al. Evaluation of cytotoxicity and up-regulation of gelatinases in human fibroblast cells by four root canal sealers. Int Endod J. 2012;45:49–56.
  • Silva EJ, Herrera DR, Almeida JF, et al. Evaluation of cytotoxicity and up-regulation of gelatinases in fibroblast cells by three root repair materials. Int Endod J. 2012;45:815–820.
  • Chang YC, Yang SF, Hsieh YS. Regulation of matrix metalloproteinase-2 production by cytokines and pharmacological agents in human pulp cell cultures. J Endod. 2001;27:679–682.
  • Tsai CH, Chen YJ, Huang FM, et al. The upregulation of matrix metalloproteinase-9 in inflamed human dental pulps. J Endod. 2005;31:860–862.
  • Zehnder M, Wegehaupt FJ, Attin T. A first study on the usefulness of matrix metalloproteinase 9 from dentinal fluid to indicate pulp inflammation. J Endod. 2011;37:17–20.
  • Corotti MV, Zambuzzi WF, Paiva KB, et al. Immunolocalization of matrix metalloproteinases-2 and -9 during apical periodontitis development. Arch Oral Biol. 2009;54:764–771.
  • Kupai K, Szucs G, Cseh S, et al. Matrix metalloproteinase activity assays: importance of zymography. J Pharmacol Toxicol Methods. 2010;61:205–209.
  • De Deus G, Ximenes R, Gurgel-Filho ED, et al. Cytotoxicity of MTA and Portland cement on human ECV 304 endothelial cells. Int Endod J. 2005;38:604–609.
  • Attik GN, Hallay F, Pradelle-Plasse N, et al. In vitro biocompatibility of a dentine substitute cement on human MG63 osteoblast cells: Biodentine™ versus MTA®. Int Endod J. 2014;47(12):1133–1141.
  • Yan P, Yuan Z, Jiang H, et al. Effect of bioaggregate on differentiation of human periodontal ligament fibroblasts. Int Endod J. 2010;43:1116–1121.
  • Jiang Y, Zheng Q, Zhou X, et al. A comparative study on root canal repair materials: a cytocompatibility assessment in L929 and MG63 cells. Sci World J. 2014;12:463826. Available from: http://doi:10.1155/2014/463826.
  • AlAnezi AZ, Jiang J, Safavi KE, et al. Cytotoxicity evaluation of endosequence root repair material. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:e122–e125.
  • Sepet E, Pinar A, Ilhan B, et al. Cytotoxic effects of calcium hydroxide and mineral trioxide aggregate on 3T3 fibroblast cell line in vitro. Quintessence Int. 2009;40:55–61.
  • Olivier A, Grobler SR, Osman Y. Cytotoxicity of seven recent dentine bonding agents on mouse 3T3 fibroblast cells. OJST. 2012;2:244–250.
  • Spagnuolo G, Desiderio C, Rivieccio V, et al. In vitro cellular detoxification of triethylene glycol dimethacrylate by adduct formation with N-acetylcysteine. Dent Mater. 2013;29:e153–e160.
  • Shin SJ, Lee JI, Baek SH, et al. Tissue levels of matrix metalloproteinases in pulps and periapical lesions. J Endod. 2012;28:313–315.
  • Huang FM, Yang SF, Chang YC. Up-regulation of gelatinases and tissue type plasminogen activator by root canal sealers in human osteoblastic cells. J Endod. 2008;34:291–294.
  • Chang SW, Lee SY, Ann HJ, et al. Effects of calcium silicate endodontic cements on biocompatibility and mineralization-inducing potentials in human dental pulp cells. J Endod. 2014;40:1194–1200.
  • Lee BN, Son HJ, Noh HJ, et al. Cytotoxicity of newly developed Ortho MTA root-end filling materials. J Endod. 2012;38:1627–1630.
  • Jang YE, Lee BN, Koh JT, et al. Cytotoxicity and physical properties of tricalcium silicate-based endodontic materials. J Korean Acad Conserv Dent. 2014;39(2):89–94.
  • Yuan Z, Peng B, Jiang H, et al. Effect of Bioaggregate on mineral-associated gene expression in osteoblast cells. J Endod. 2010;46:1145–1148.
  • Park JW, Hong SH, Kim JH, et al. X-ray diffraction analysis on white ProRoot MTA and Diadent BioAggregate. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(1):155–158.
  • Guven Y, Tuna EB, Dincol ME, et al. X-ray diffraction analysis of MTA-Plus, MTA-Angelus and DiaRoot BioAggregate. Eur J Dent. 2014;8(2):211–215.
  • Cavdar Tetik EA, Dartar Öztan M, Kıyan M. Comparison of in vitro antimicrobial activities of bioaggregate and mineral trioxide aggregate. Mikrobiyol Bul. 2013;47(3):523–528. Turkish.
  • Simsek N, Alan H, Ahmetoglu F, et al. Assessment of the biocompatibility of mineral trioxide aggregate, Bioaggregate, and Biodentine in the subcutaneous tissue of rats. Niger J Clin Pract. 2015;18(6):739–743.
  • Tian J, Qi W, Zhang Y, et al. Bioaggregate inhibits osteoclast differentiation, fusion, and bone resorption in vitro. J Endod. 2015;41(9):1500–1506.
  • Khalil WA, Eid NF. Biocompatibility of BioAggregate and mineral trioxide aggregate on the liver and kidney. Int Endod J. 2013;46:730–737.
  • Modena KC, Casas-Apayco LC, Atta MT, et al. Cytotoxicity and biocompatibility of direct and indirect pulp capping materials. J Appl Oral Sci. 2009;17:544–554.
  • Chung CJ, Kim E, Song M, et al. Effects of two fast-setting calcium-silicate cements on cell viability and angiogenic factor release in human pulp-derived cells. Odontology. 2016;104(2):143–151.
  • Khedmat S, Dehghan S, Hadjati J, et al. In vitro cytotoxicity of four calcium silicate-based endodontic cements on human monocytes, a colorimetric MTT assay. Restor Dent Endod. 2014;39:149–154.
  • Samyuktha V, Ravikumar P, Nagesh B, et al. Cytotoxicity evaluation of root repair materials in human-cultured periodontal ligament fibroblasts. J Conserv Dent. 2014;17:467–470.
  • Ashraf A, Gosier JL, Primus CM, et al. In vitro biocompatibility and oxidative stress profiles of different hydraulic calcium silicate cements. J Endod. 2014;40:255–260.
  • Hirschman WR, Wheater MA, Bringas JS, et al. Cytotoxicity comparison of three current direct pulp-capping agents with a new bioceramic root repair putty. J Endod. 2012;38:385–388.
  • Poggio C, Ceci M, Beltrami R, et al. Biocompatibility of a new pulp capping cement. Ann Stomatol (Roma). 2014;5:69–76.