1,315
Views
5
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud) evaluated by SSR markers

, , , , , & show all
Pages 36-44 | Received 19 May 2016, Accepted 24 Oct 2016, Published online: 15 Nov 2016

References

  • Sen T, Reddy HNJ. Various industrial applications of hemp, kinaf, flax and ramie natural fibres. Int J Innov Manage Technol. 2011;2:192–198.
  • Liu TM, Zhu SY, Fu L, et al. Development and characterization of 1827 expressed sequence tag-derived simple sequence repeat markers for ramie (Boehmeria nivea L. Gaud). PLos ONE. 2013 [ cited 2013 Apr 2];8(4):e60346. Available from: http://dx.doi.org/10.1371/journal.pone.0060346
  • Xiong H. The production status and policy suggestion of bast and leaf fiber crops in China. Plant Fiber Sci China. 2010;32:301–304.
  • Poczai P, Varga I, Hyvonen J, et al. Genomics meets biodiversity: advances in molecular marker development and their applications in plant genetic diversity assessment. In: Caliskan M, editor. The molecular basis of plant genetic diversity. Rijeka (Croatia): InTech; 2012. p. 3–32.
  • Satya P, Karan M, Jana S, et al. Start codon targeted (SCoT) polymorphism reveals genetic diversity in wild and domesticated populations of ramie (Boehmeria nivea L. Gaudich.), a premium textile fiber producing species. Meta Gene. 2015;3:62–70.
  • Vavilov NI. Origin and geography of cultivated plants. New York (NY): Cambridge University Press; 1992.
  • Zhao CY, Li JS, Shu Z, et al. Evaluation and utilization of resources of ramie in Qinba mountain area. Acta Agric Bor Occid Sin. 1999;8:116–118.
  • Liao L, Li T, Zhang J, et al. The domestication and dispersal of the cultivated ramie (Boehmeria nivea (L.) Gaud.inFreyc.) determined by nuclear SSR marker analysis. Genet Resour Crop Evol. 2014;61:55–67.
  • De Cesare M, Hodkinson TR, Barth S. Chloroplast DNA markers (cpSSRs,SNPs) for Miscanthus, Saccharum and related grasses (Panicoideae, Poaceae). Mol Breed. 2010;26:539–544.
  • Sun CQ, Wang XK, Li ZC, et al. Comparison of the genetic diversity of common wild rice (Oryza rufipogon Griff.) and cultivated rice (O. sativa L.) using RFLP markers. Theor Appl Genet. 2001;102:157–162.
  • Uzun B, Lee D, Donini P, et al. Identification of a molecular marker linked to the closed capsule mutant trait in sesame using AFLP. Plant Breed. 2003;122:95–97.
  • Basheer-Salimia R, Shtaya M, Awad M, et al. Genetic diversity of Palestine landraces of faba bean (Vicia faba) based on RAPD markers. Genet Mol Res. 2013;12(3):3314–3323.
  • Wang YW, Samuels TD, Wu YQ. Development of 1,030 genomic SSR markers in switchgrass. Theor Appl Genet. 2011;122:677–686.
  • Tam SM, Mhiri C, Vogelaar A, et al. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet. 2005;110:819–831.
  • Yu J, Ulloa M, Hoffman S, et al. Mapping genomic loci for cotton plant architecture, yield components, and fiber properties in an interspecific (Gossypium hirsutum L. x G. barbadense L.) RIL population. Mol Genet Genomics. 2014;289:1347–1367.
  • Hashemi F, Rafii M, Ismail M, et al. Opportunities of marker-assisted selection for rice fragrance through marker-trait association analysis of microsatellites and gene-based markers. Plant Biol. 2015;17:953–961.
  • Chen C, Bock C, Beckman T. Sequence analysis reveals genomic f actors affecting EST-SSR primer performance and polymorphism. Mol Genet Genomics. 2014;289:1147–1156.
  • Jiang Q, Wang F, Tan H, et al. De novo transcriptome assembly, gene annotation, marker development, and miRNA potential target genes validation under abiotic stresses in Oenanthe javanica. Mol Genet Genomics. 2015;290:671–683.
  • Tan C, Wu Y, Taliaferro C, et al. Development and characterization of genomic SSR markers in Cynodon transvaalensis Burtt-Davy. Mol Genet Genomics. 2014;289:523–531.
  • Zhang M, Jiang L, Zhang D, et al. De novo transcriptome characterization of Lilium ‘Sorbonne’ and key enzymes related to the flavonoid biosynthesis. Mol Genet Genomics. 2015;290:399–412.
  • Chen J, Luan M, Song S, et al. Isolation and characterization of EST-SSRs in the Ramie. Afr J Microbiol Res. 2011;5:3504–3508.
  • Kundu A, Topdar N, Sarkar D, et al. Origins of white (Corchorus capsularis L.) and dark (C. olitorius L.) jute: a reevaluation based on nuclear and chloroplast microsatellites. J Plant Biochem Biotechnol. 2013;22:372–381.
  • Banerjee S, Das M, Mir R, et al. Assessment of genetic diversity and population structure in a selected germplasm collection of 292 jute genotypes by microsatellite (SSR) markers. Mol Plant Breed. 2012;3:11–25.
  • Zhou J, Jie Y, Jiang Y, et al. Genetic relation analysis on ramie cultivars with microsatellite markers. Acta Agron Sin. 2003;30:289–292.
  • Meng ZQ, Liu LJ Peng DX. Analysis on genetic diversity of ramie (Boehmeria nivea L. Gaud.) wild germplasm by RAPD and ISSR markers. Mol Plant Breed. 2009;7:365–370.
  • Liu LJ, Peng DX, Wang B. Genetic relation analysis on Ramie [Boehmeria nivea (L.) Gaud.] inbred lines by SRAP markers. Agric Sci China. 2008;7:944–949.
  • Liu LJ, Wang XX, Wang B, et al. Analysis of genetic relationship of ramie (Boehmeria nivea) inbred line clones as revealed by ISSR. Sci Agric Sin. 2011;44:1543–1552.
  • Luan MB, Zou ZZ, Zhu J, et al. Genetic diversity assessment using simple sequence repeats (SSR) and sequence-related amplified polymorphism (SRAP) markers in ramie. Biotechnol Biotechnol Equip. 2015;29:624–630.
  • Zhang J, Wu YT, Guo WZ, et al. Fast screening of microsatellite markers in cotton with PAGE/silver staining. Acta Gossypii Sin. 2000;12(5):267–269.
  • Chung JW, Kim TS, Suresh S, et al. Development of 65 novel polymorphic cDNA-SSR markers in common vetch (Vicia sativa subsp. sativa) using next generation sequencing. Molecules. 2013;18:8376–8392.
  • Nei M, Li W. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA. 1979;76:5269–5273.
  • Sneath PHA, Sokal RR. Numerical taxonomy. The principles and practice of numerical classification. San Francisco: W.H. Freeman and Co.; 1973.
  • Rohlf F. NTSYS-pc. Numerical taxonomy and multivariate analysis system. Version 2.10. New York (NY): Exeter Software; 2002.
  • Pritchard J, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959.
  • Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–2620.
  • Zhang B, Zheng CQ, Zang GG, et al. The comparative morphology of Boehmeria in China. Agric Sci China. 1998;31(2):56–60.
  • Zang GG. A karyological study on five species in three section of genus Boehmeria. China Fiber Crops. 1993;1:65–70.
  • Hu N, Guo Q. A first study on the evolution of ramie peroxidase isozymes. J Nat Sci Hunan Norm Univ. 1991;14(1):73–75.
  • Wu F, Zhang DY, Ma JX, et al. Analysis of genetic diversity and population structure in accessions of the genus Melilotus. Ind Crops Prod. 2016;85:84–92.
  • Belaj A, Muñoz-Diez C, Baldoni L, et al. Genetic diversity and population structure of wild olives from the north-western Mediterranean assessed by SSR markers. Ann Bot. 2007;100(3):449–458.
  • Zhang LW, Yuan MH, Tao AF, et al. Genetic structure and relationship analysis of an association population in jute (Corchorus spp.) evaluated by SSR markers. PLos ONE. 2015 [ cited 2015 Jun 2];10(6):e0128195. Available from: http://dx.doi.org/10.1371/journal.pone.0128195
  • Luan MB, Zou ZZ, Zhu J, et al. Development of a core collection for ramie by heuristic search based on SSR markers. Biotechnol Biotechnol Equip. 2014;28:798–804.
  • Zou ZZ, Chen JH, Luan MB. Evaluation of genetic relationship in ramie based on RSAP, SRAP, and SSR. Acta Agron Sin. 2012;38:840–847.