825
Views
1
CrossRef citations to date
0
Altmetric
Article; Medical Biotechnology

Impact of KCNQ2 mutations in Bulgarian patients with electroclinical syndromes with onset in the first year of life

, , , , , , , , , , & show all
Pages 138-142 | Received 18 Aug 2016, Accepted 07 Nov 2016, Published online: 30 Nov 2016

References

  • Deprez L, Jansen A, De Jonghe P. Genetics of epilepsy syndromes starting in the first year of life. Neurology. 2009;72(3):273–281.
  • Loiseau P, Duché B, Cordova S, et al. Prognosis of benign childhood epilepsy with centrotemporal spikes: a follow-up study of 168 patients. Epilepsia. 1988;29(3):229–235.
  • Maihara T, Tsuji M, Higuchi Y, et al. Benign familial neonatal convulsions followed by benign epilepsy with centrotemporal spikes in two siblings. Epilepsia. 1999;40(1):110–113.
  • Coppola G, Castaldo P, Miraglia Del Giudice E, et al. A novel KCNQ2 K+channel mutation in benign neonatal convulsions and centrotemporal spikes. Neurology. 2003;61(1):131–134.
  • Ishii A, Miyajima T, Kurahashi H, et al. KCNQ2 abnormality in BECTS: benign childhood epilepsy with centrotemporal spikes following benign neonatal seizures resulting from a mutation of KCNQ2. Epilepsy Res. 2012;102(1–2):122–125.
  • Zara F, Specchio N, Striano P, et al. Genetic testing in benign familial epilepsies of the first year of life: clinical and diagnostic significance. Epilepsia. 2013;54(3):425–436.
  • Wen H, Levitan B. Calmodulin is an auxiliary subunit of KCNQ2/3 potassium channels. J Neurosci. 2002;22(18):7991–8001.
  • Yus-Nájera E, Santana-Castro I, Villarroel A. The identification and characterization of a noncontinuous calmodulin-binding site in noninactivating voltage-dependent KCNQ potassium channels. J Biol Chem. 2002;277(32):28545–28553.
  • Steinlein O, Conrad C, Weidner B. Benign familial neonatal convulsions: always benign? Epilepsy Res. 2007;73(3):245–249.
  • Singh NA, Westenskow P, Charlier C, et al. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain. 2003;126(12):2726–2737.
  • Kurahashi H, Wang J, Ishii A, et al. Deletions involving both KCNQ2 and CHRNA4 present with benign familial neonatal seizures. Neurology. 2009;73(15):1214–1217.
  • Okumura A, Ishii A, Shimojima K, et al. Phenotypes of children with 20q13.3 microdeletion affecting KCNQ2 and CHRNA4. Epileptic Disord. 2015;17(2):165–171.
  • Marubio LM, del Mar Arroyo-Jimenez M, Cordero-Erausquin M, et al. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature. 1999;398(6730):805–810.
  • Béri-Deixheimer M, Gregoire M, Toutain A, et al. Genotype–phenotype correlations to aid in the prognosis of individuals with uncommon 20q13.33 subtelomere deletions: a collaborative study on behalf of the ‘association des Cytogénéticiens de langue Française’. Eur J Hum Genet. 2007;15(4):446–452.
  • Pascual F, Wierenga K, Ng Y. Contiguous deletion of KCNQ2 and CHRNA4 may cause a different disorder from benign familial neonatal seizures. Epilepsy Behav Case Rep. 2013;1:35–38.
  • Allen NM, Mannion M, Conroy J, et al. The variable phenotypes of KCNQ-related epilepsy. Epilepsia. 2014;55(9):e99–e105.