989
Views
2
CrossRef citations to date
0
Altmetric
Review; Medical Biotechnology

Some problems and errors in cytogenetic biodosimetry

, , &
Pages 460-468 | Received 01 Oct 2016, Accepted 07 Nov 2016, Published online: 14 Dec 2016

References

  • Toohev RE, Kathren RL. Overview and dosimetry of the hanford americium accident case. Health Phys. 1995;69(3):310–317.
  • Ivanov VK, Chekin SIu, Kashcheev VV, et al. Mortality among the liquidators of the Chernobyl accident: dose dependences and groups of the potential risk. Radiats Biol Radioecol. 2011;51(1):41–48.
  • van der Burgt I, Chrzanowska KH, Smeets D, et al. Nijmegen breakage syndrome. J Med Genet. 1996;33(2):153–156.
  • Barlow C, Dennery PA, Shigenaga MK, et al. Loss of the ataxia-telangiectasia gene product causes oxidative damage in target organs. Proc Natl Acad Sci USA. 1999;96:9915–9919.
  • Moshous D, Callebaut I, de Chasseval R, et al. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell. 2001;105:177–186.
  • Buck D, Malivert L, de Chasseval R, et al. Cernunnos, a novel nonhomologous end-joining factor, is mutated in human immunodeficiency with microcephaly. Cell. 2006;124:287–299.
  • Chicheva Z, Chelenkova P, Petkova R, et al. Children of the Sun, children of the Moon – a mini-panel for assessment of inter-individual variation between the capacity of healthy individuals to repair everyday genotoxic insults. Biotechnol Biotechnol Equip. 2012;26(4): 3142–3147.
  • Chakarov S, Petkova R, Russev GCh. Individual capacity for detoxification of genotoxic compounds and repair of DNA damage. Commonly used methods for assessment of capacity for DNA repair. Biodiscovery [Internet]. 2014 [cited 2016 Oct 1];11:2. Available from: http://www.biodiscoveryjournal.co.uk/Archive/A38.htm.
  • Laczmanska I, Gil J, Karpinski P, et al. Polymorphism in nucleotide excision repair gene XPC correlates with bleomycin-induced chromosomal aberrations. Environ Mol Mutagen. 2007;48(8):666–671.
  • Vodicka P, Kumar R, Stetina R, et al. Markers of individual susceptibility and DNA repair rate in workers exposed to xenobiotics in a tire plant. Environ Mol Mutagen. 2004;44(4):283–292.
  • Hanawalt PC. Revisiting the rodent repairadox. Environ Mol Mutagen. 2001;38:89–96.
  • Hyka-Nouspikel N, Lemonidis K, Lu WT, et al. Circulating human B lymphocytes are deficient in nucleotide excision repair and accumulate mutations upon proliferation. Blood. 2011;117(23):6277–6286.
  • Chakarov S, Petkova R, Russev GCh. DNA repair systems. Biodiscovery [Internet]. 2014 [2016 Oct 1];13:2. Available from: http://www.biodiscoveryjournal.co.uk/Archive/A41.htm.
  • Nouspikel T, Hanawalt PC. DNA repair in terminally differentiated cells. DNA Repair (Amst). 2002;1(1):59–75.
  • Chakarov S, Russev G. DNA repair and differentiation – does getting older means getting wiser as well? Biotechnol Biotechnol Equip. 2010;24(2):1804–1806.
  • Nouspikel T, Hanawalt PC. When parsimony backfires: neglecting DNA repair may doom neurons in Alzheimer's disease. Bioessays. 2003;25(2):168–173.
  • Silva AR, Santos AC, Farfel JM, et al. Repair of oxidative DNA damage, cell-cycle regulation and neuronal death may influence the clinical manifestation of Alzheimer's disease. PLoS One [Internet]. 2014 [cited 2016 Oct 1];9(6):e99897. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099897
  • Petkova R, Chelenkova P, Tournev I, et al. The minus of a plus is a minus. Mass death of selected neuron populations in sporadic late-onset neurodegenerative disease may be due to a combination of subtly decreased capacity to repair oxidative DNA damage and increased propensity for damage-related apoptosis. Biotechnol Biotechnol Equip. 2016;30(4):623–643.
  • Petkova R, Chelenkova P, Georgieva E, et al. What's your poison? Impact of individual repair capacity on the outcomes of genotoxic therapies in cancer. Part I – role of individual repair capacity in the constitution of risk for late-onset multifactorial disease. Biotechnol Biotechnol Equip. 2013;27(6):4208–4216.
  • Petkova R, Chelenkova P, Georgieva E, et al. What's your poison? Impact of individual repair capacity on the outcomes of genotoxic therapies in cancer. Part II – information content and validity of biomarkers for individual repair capacity in the assessment of outcomes of anticancer therapy. Biotechnol Biotechnol Equip. 2014;28(1):2–7.
  • Fujita H, Ohuchida K, Mizumoto K, et al. Gene expression levels as predictive markers of outcome in pancreatic cancer after gemcitabine-based adjuvant chemotherapy. Neoplasia. 2010;12(10):807–817.
  • Nakamura J, Kohya N, Kai K, et al. Ribonucleotide reductase subunit M1 assessed by quantitative double-fluorescence immunohistochemistry predicts the efficacy of gemcitabine in biliary tract carcinoma. Int J Oncol. 2010;37(4):845–852.
  • Zeng H, Yu H, Lu L, et al. Genetic effects and modifiers of radiotherapy and chemotherapy on survival in pancreatic cancer. Pancreas. 2011;40(5):657–663.
  • Metzger R, Warnecke-Eberz U, Alakus H, et al. Neoadjuvant radiochemotherapy in adenocarcinoma of the esophagus: ERCC1 gene polymorphisms for prediction of response and prognosis. J Gastrointest Surg. 2012;16(1):26–34; discussion 34.
  • Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408(6810):307–310.
  • Chakarov S, Petkova R, Russev GCh. p53–guardian angel and archangel. Biotechnol Biotechnol Equip. 2012;26(1):2695–2702.
  • Valente L, Strasser A. Distinct target genes and effector processes appear to be critical for p53-activated responses to acute DNA damage versus p53-mediated tumour suppression. BioDiscovery [Internet]. 2013 [cited 2016 Oct 1];8:3. Available from: http://www.biodiscoveryjournal.co.uk/Archive/A29.htm
  • Yogev O, Barker K, Sikka A, et al. p53 Loss in MYC-driven neuroblastoma leads to metabolic adaptations supporting radioresistance. Cancer Res. 2016;76(10):3025–3035.
  • Petkova R, Chelenkova P, Yemendjiev H, et al. HPV has left the building – the absence of detectable HPV DNA and the presence of R allele/s for the P72P polymorphism in the TP53 gene may call for more aggressive therapeutic approach in HPV-associated tumours. Biotechnol Biotechnol Equip. 2013;27(6):4217–4221.
  • Song L, Liu S, Zeng S, et al. miR-375 modulates radiosensitivity of HR-HPV-positive cervical cancer cells by targeting UBE3A through the p53 pathway. Med Sci Monit. 2015;21:2210–2217.
  • Andreassen CN, Alsner J, Overgaard M, et al. Prediction of normal tissue radiosensitivity from polymorphisms in candidate genes. Radiother Oncol. 2003;69(2):127–135.
  • Ahn J, Ambrosone CB, Kanetsky PA, et al. Polymorphisms in genes related to oxidative stress (CAT, MnSOD, MPO, and eNOS) and acute toxicities from radiation therapy following lumpectomy for breast cancer. Clin Cancer Res. 2006;12(23):7063–7070.
  • Bartsch H, Dally H, Popanda O, et al. Genetic risk profiles for cancer susceptibility and therapy response. Recent Results Cancer Res. 2007;174:19–36.
  • Santi R, Cetica V, Franchi A, et al. Tumour suppressor gene TP53 mutations in atypical vascular lesions of breast skin following radiotherapy. Histopathology. 2011;58(3):455–466.
  • Damaraju S, Murray D, Dufour J, et al. Association of DNA repair and steroid metabolism gene polymorphisms with clinical late toxicity in patients treated with conformal radiotherapy for prostate cancer. Clin Cancer Res. 2006;12(8):2545–2554.
  • Khalil HS, Tummala H, Chakarov S, et al. Targeting ATM pathway for therapeutic intervention in cancer. Biodiscovery [Internet]. 2012 [cited 2016 Oct 1];1:3. Available from: http://www.biodiscoveryjournal.co.uk/Archive/A4.ht
  • Khalil HS, Tummala H, Zhelev N. ATM in focus: a damage sensor and cancer target. Biodiscovery [Internet]. 2012 [cited 2016 Oct 1];5:1. Available from: http://www.biodiscoveryjournal.co.uk/Archive/A18.htm
  • Zhang L, Yang M, Bi N, et al. ATM polymorphisms are associated with risk of radiation-induced pneumonitis. Int J Radiat Oncol Biol Phys. 2010;77(5):1360–1368.
  • Twardella D, Popanda O, Helmbold I, et al. Personal characteristics, therapy modalities and individual DNA repair capacity as predictive factors of acute skin toxicity in an unselected cohort of breast cancer patients receiving radiotherapy. Radiother Oncol. 2003;69(2):145–153.
  • Rogers PC, Meacham LR, Oeffinger KC, et al. Obesity in pediatric oncology. Pediatr Blood Cancer. 2005;45(7):881–891.
  • Mongan AM, Lynam-Lennon N, Maher S, et al. Obesity drives radioresistance and enhances genomic instability in oesophageal adenocarcinoma. Gut. 2012;61:A53.
  • Hoff CM. Importance of hemoglobin concentration and its modification for the outcome of head and neck cancer patients treated with radiotherapy. Acta Oncol. 2012;51(4):419–432.
  • Mothersill C, Seymour C. Relevance of radiation-induced bystander effects for environmental risk assessment. Radiats Biol Radioecol. 2002;42(6):585–587.
  • Chakarov S, Petkova R, Zhelev N, et al. Chapter XII DNA repair and evolution. In: Lane DP, editor. DNA repair and individual repair capacity. Dundee: Dundee Science Press 2014. p. 437–470.
  • Petkova R, Chakarov S. The final checkpoint – cancer as an adaptive evolutionary mechanism. Biotechnol Biotechnol Equip. 2016;30(3):434–442.
  • Chakarov S, Stoilov P, Alexandrov A, et al. Repair pattern in the beta-globin gene cluster of human fibroblasts after ultraviolet irradiation. Eur J Biochem. 1997;248:669–675.
  • Marden A, Walmsley RM, Schweizer LM, et al. Yeast-based assay for the measurement of positive and negative influences on microsatellite stability. FEMS Yeast Res. 2006;6:716–725.
  • Chakarov S, Roeva I, Russev G. An experimental model for assessment of global DNA repair capacity. Biotechnol Biotechnol Equip. 2011;5(3):2505–2507.
  • Pero RW, Bryngelsson C, Mitelman F, et al. Interindividual variation in the responses of cultured human lymphocytes to exposure from DNA damaging chemical agents: interindividual variation to carcinogen exposure. Mutat Res. 1978;53(3):327–341.
  • Pero RW, Ostlund C. Direct comparison, in humans resting lymphocytes, of the inter-individual variations in unscheduled DNA synthesis induced by N-acetoxy-2-acetylaminofluorene and ultraviolet irradiation. Mutat Res. 1980;73(2):349–361.
  • Bosi A, Olivieri G. Variability of the adaptive response to ionising radiations in humans. Mutat Res. 1989;211(1):13–17.
  • Bauchinger M, Schmid E, Braselmann H, et al. Absence of adaptive response to low-level irradiation from tritiated thymidine and X-rays in lymphocytes of two individuals examined in serial experiments. Mutat Res. 1989;227(2):103–107.
  • Mosse IB. Genetic effects of ionising radiation – some questions with no answers. J Environ Radioact. 2012;112:70–75.
  • Mosse I, Kostrova L, Subbot S, et al. Melanin decreases clastogenic effects of ionizing radiation in human and mouse somatic cells and modifies the radioadaptive response. Radiat Environ Biophys. 2000;39(1):47–52.
  • Mosse I, Molophei V, Plotnikova S, et al. Genetic effects of low radiation doses and their modification by different chemicals. In: Proceedings of the European Nuclear Conference; 2002 Oct 7–9; Foratom, Lille, France. Abs. 52.
  • Wang X, Quinn PJ. Vitamin E and its function in membranes. Prog Lipid Res. 1999;38(4):309–336.
  • Franza JP, Morales AAFS, Trindade ES, et al. α-Tocopherol in mice ileum exposed to gamma radiation: protection against apoptosis. Acta Microscopica. 2003;12:615–616.
  • Songthaveesin C, Saikhun J, Kitiyanant Y, et al. Radioprotective effect of vitamin E on spermatogenesis in mice exposed to γ-radiation: a flow cytometric study. Asian J Androl. 2004;6(4):331–336.
  • Laurent C, Pouget JP, Voisin P, et al. Modulation of DNA damage by pentoxifylline and alpha-tocopherol in skin fibroblasts exposed to gamma rays. Radiat Res. 2005;164(1):63–72.
  • Mothersill C, Seymour CB. Cell–cell contact during gamma irradiation is not required to induce a bystander effect in normal human keratinocytes: evidence for release during irradiation of a signal controlling survival into the medium. Radiat Res. 1998;149(3):256–262.
  • Azzam EI, de Toledo SM, Little JB. Oxidative metabolism, gap junctions and the ionizing radiation-induced bystander effect. Oncogene. 2003;22(45):7050–7057.
  • Chaudhry MA. Bystander effect: biological endpoints and microarray analysis. Mutat Res. 2006;597(1–2):98–112.
  • Marozik P, Mothersill C, Seymour CB, et al. Bystander effects induced by serum from survivors of the Chernobyl accident. Exp Hematol. 2007;35(4):55–63.
  • Wright EG, Coates PJ. Untargeted effects of ionizing radiation: implications for radiation pathology. Mutat Res. 2006;597(1–2):119–132.
  • Chakarov S, Petkova R, Russev GCh, et al. DNA repair and carcinogenesis. Biodiscovery [Internet]. 2014 [cited 2016 Oct 1];12:1. Available from: http://www.biodiscoveryjournal.co.uk/Archive/A39.htm
  • Undabeytia TS, Recio E, Maqueda C, et al. Reduced metribuzin pollution with phosphatidylcholine-clay formulations. Pest Manag Sci. 2011;67(3):271–278.
  • Mosse I, Plotnikova S, Kostrova L. Genetic effects of combined action of herbicide zencor and radiation. In: Proceedings of the Conference of MAB National Committees of Europe and North America (EUROMAB VI); 1997 Sep 16–20; Minsk, Belarus. p. 185–190.
  • Mosse IB, Kostrova LN, Molophei VP. Genetic effects of combined action of some chemicals and ionising radiation in animals and human cells. In: Mothersill C, Mosse I, Seymour S, editors. Multiple stressors – a challenge for the future. ( NATO Science for Peace and Security Series C: Environmental Security). Springer; 2007. p. 271–286. DOI:10.1007/978-1-4020-6335-0_18
  • Trebst A, Wietoska H. [Mode of action and structure-acitivity-relationships of the aminotriazinone herbicide Metribuzin. Inhibition of photosynthetic electron transport in chloroplasts by Metribuzin (author's transl)]. Z Naturforsch C. 1975;30(4):499–504. German.
  • Chakarov S, Petkova R, Russev GCh, et al. DNA damage and mutation. Types of DNA damage. Biodiscovery [Internet]. 2014 [cited 2016 Oct 1];11:1. Available from: http://www.biodiscoveryjournal.co.uk/Archive/A37.htm
  • Hill HZ. The function of melanin or six blind people examine an elephant. Bioessays. 1992;14(1):49–56.
  • Różanowska M, Sarna T, Land EJ, et al. Free radical scavenging properties of melanin: Interaction of eu- and pheo-melanin models with reducing and oxidising radicals. Free Radic Biol Med. 1999; 26(5–6):518–525.
  • Baraboi VA. Plants, phenols and human health. Moscow: Nauka; 1984.
  • Novikov DA, Kurchenko VP, Azarko II. [Photoprotective properties of melanins from grape (Vitis vinifera) and black tea (Thea sinensis)]. Radiats Biol Radioecol. 2001;41(6):664–670. Russian.
  • Selvakumar P, Rajasekar S, Periasamy K, et al. Isolation and characterization of melanin pigment from Pleurotus cystidiosus (telomorph of Antromycopsismacrocarpa). World J Microbiol Biotechnol. 2008;24(10):2125–2131.
  • Shields LM, Durrell LW. Preliminary observations on radiosensitivity of algae and fungi from soils of the Nevada test site. Ecology. 1961;42:440–441.
  • Krivolutzky LA, Smurov АВ, Snetkov MA. Influence of soil radiocontamination with 90Str on some organisms variability. J General Biol. 1972;33:581–591.
  • Quevedo WC, Grain D. Effect of daily gamma-irradiation on the pigmentation of mice. Radiat Res. 1958;8:254–264.
  • Brunst VV. New observations concerning roentgen sensitivity of pigment cells in young Axolotls (Siredon mexicanum). Am J Roentgenol Radium Ther Nucl Med. 1965;93:222–237.
  • Mosse IB, Marozik PM. Some natural chemical antioxidants: functions and genetic effects. In: Barnes Y, Kharytonov MM, editors. Simulation and assessment of chemical processes in a multiphase environment. Springer; 2008. p. 409–433. DOI:10.1007/978-1-4020-8846-9
  • Mosse I, Marozik P, Seymour C, et al. Melanin influence on bystander effect in human keratinocytes. Mutat Res. 2006;597(1–2):133–137.
  • Mosse IВ, Lyach IP. Influence of melanin on mutation load in Drosophila population after long-term irradiation. Radiat Res. 1994;139(3):357–359.
  • Subbot ST, Maksimenya I, Molophei VP. Melanin decreases clastogenic effects of ionising radiation in human and mouse somatic cells and modifies the radioadaptive response. Radiat Environ Biophys. 2000;39(1):47–52.
  • Mosse I, Dubovic B, Plotnikova S, et al. Melanin is effective radioprotector against chronic irradiation and low radiation doses. In: Proceedings of the IRPA Regional Congress on Radiation Protection in Central Europe; 2001 May 20–25; Dubrovnik. p. 1–6.
  • Berdishev GD. About protective action of melanin in irradiated mice. Radiobiologia. 1964;4:644–645.
  • Gilchrest BA, Park HY, Eller MS, et al. Mechanisms of ultraviolet light-induced pigmentation. Photochem Photobiol. 1996;63(1):1–10.