8,590
Views
88
CrossRef citations to date
0
Altmetric
Review; Bioinformatics

Artificial neural networks: an efficient tool for modelling and optimization of biofuel production (a mini review)

, &
Pages 221-235 | Received 25 Apr 2016, Accepted 05 Dec 2016, Published online: 27 Dec 2016

References

  • Franco-Lara E, Link H, Weuster-Botz D. Evaluation of artificial neural networks for modeling and optimization of medium composition with a genetic algorithm. Process Biochem. 2006;41:2200–2206.
  • Wang JL, Wan W. Factors influencing fermentative hydrogen production: a review. Int J Hydrog Energy. 2009;34:799–811.
  • Escamilla-Alvarado C, Rios-Leal E, Ponce-Noyola MT, et al. Gas biofuels from solid substrate hydrogenic–methanogenic fermentation of the organic fraction of solid municipal wastes. Process Biochem. 2012;47(11):1572–1587.
  • Ahmadian-Moghadam H, Elegado FB, Nayve R. Prediction of ethanol concentration in biofuel production using artificial neural networks. Am J Model Optim. 2013;1(3):31–35.
  • Levin DB, Pitt L, Love M. Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy. 2004;29:173–185.
  • Nath K, Das D. Modeling and optimization of fermentative hydrogen production. Bioresour Technol. 2011;102:8569–8581.
  • Naik SN, Goud VV, Rout PK, et al. Production of first and second generation biofuels: a comprehensive review. Renew Sust Energy Rev. 2010;14:578–597.
  • Zhou M, Wang H, Hassett DJ, et al. Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts. J Chem Technol Biotechnol. 2012;88:508–518.
  • Wang JL, Wan W. Optimization of fermentative hydrogen production process using genetic algorithm based on neural network and response surface methodology. Int J Hydrog Energy. 2009;34:255–261.
  • Wang JL, Wan W. Application of desirability function based on neural network for optimizing biohydrogen production process. Int J Hydrog Energy. 2009;34:1253–1259.
  • Gueguim Kana EB, Oloke JK, Lateef A, et al. Modelling and optimization of biogas production on saw dust and other co-substrates using artificial neural network and genetic algorithm. Renew Energy. 2012;46:276–281.
  • Abu-Qdais H, Bani-Hani K, Shatnawi N. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour Conserv Recycl. 2012;54:359–363.
  • Saraphirom P., Reungsang A. Optimization of biohydrogen production from sweet sorghum syrup using statistical methods. Int J Hydrog Energy. 2010;35:13435–13444.
  • Mohamed MS, Tan JS, Mohamad R, et al. Comparative analyses of response surface methodology and artificial neural network on medium optimization for Tetraselmis sp. FTC209 grown under mixotrophic condition. Sci World J. 2013;2013:1–14. Article ID 948940.
  • Sewsynker Y, Gueguim Kana EB, Lateef A. Modelling of biohydrogen generation in microbial electrolysis cells (MECs) using a committee of artificial neural networks (ANNs). Biotechnol Biotechnol Equip. 2015;29(6):1208–1215.
  • Ghosh D, Sobro IF, Hallenbeck PC. Optimization of the hydrogen yield from single-stage photofermentation of glucose by Rhodobacter capsulatus JP91 using Response Surface Methodology. Bioresour Technol. 2012;123:199–206.
  • Kyazze G, Popov A, Dinsdale R, et al. Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell. Int J Hydrog Energy. 2010;35:7716–7722.
  • Selembo PA, Perez JM, Lloyd WA, et al. High hydrogen production from glycerol or glucose by electro-hydrogenesis using microbial electrolysis cells. Int J Hydrog Energy. 2009;34:5373–5381.
  • Lu L, Ren N, Zhao X, et al. Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single chamber microbial electrolysis cells. Energy Environ Sci. 2011;4:1329–1336.
  • Tartakovsky B, Manuel MF, Wang H, et al. High rate membrane-less microbial electrolysis cell for continuous hydrogen production. Int J Hydrog Energy. 2009;34:672–677.
  • Guo K, Tang X, Du Z, et al. Hydrogen production from acetate in a cathode-on-top single-chamber microbial electrolysis cell with a minor cathode. Biochem Eng J. 2010;51:48–52.
  • Yahya AZ, Wahab AKA, Hussain MA. Optimal production of biohydrogen gas via Microbial Electrolysis cells (MEC) in a controlled batch reactor system. Chem Eng J. 2013;32:727–732.
  • Cheng S, Xing D, Logan BE. Electricity generation of single-chamber microbial fuel cells at low temperatures. Biosens Bioelectron. 2011;26:1913–1917.
  • Whiteman JK, Gueguim Kana EB. Comparative assessment of the Artificial Neural Network and Response Surface Modelling efficiencies for biohydrogen production on sugar cane molasses. Bioenergy Res. 2013;7(1):295–305.
  • Wang YX, Lu ZX. Optimization of processing parameters for the mycelial growth and extracellular polysaccharide production by Boletus sp. ACCC50328. Process Biochem. 2005;40:1043–1051.
  • Lotfy WA, Ghanem KM, El-Helow ER. Citric acid production by a novel Aspergillus niger isolate:II. Optimization of process parameters through statistical experimental designs. Bioresour Technol. 2007;98:3470–3477.
  • Desai KM, Survase SA, Saudagar PS, et al. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. J Biochem Eng. 2008;41:266–273.
  • Zhang Y, Teng L, Quan Y, et al. Artificial intelligence based optimization of fermentation medium for β-glucosidase production from newly isolated strain Tolypocladium cylindrosporum. Lecture Notes Comp Sci. 2010;6330:325–332.
  • Prakasham RS, Sathish T, Brahmaiah P. Imperative role of neural networks coupled genetic algorithm on optimization of biohydrogen yield. Int J Hydrog Energy. 2011;36:4332–4339.
  • Haider MA, Pakshirajan K, Singh A, et al. Artificial neural network genetic algorithm approach to optimize media constituents for enhancing lipase production by a soil microorganism. Appl Biochem Biotech. 2008;144:225–235.
  • Garlapati VK, Banerjee R. Evolutionary and swarm intelligence-based approaches for optimization of lipase extraction from fermented broth. Eng Life Sci. 2010;10:265–273.
  • Nagata U, Chu KH. Optimization of a fermentation medium using neural networks and genetic algorithms. Biotechnol Lett. 2003;25:1837–1842.
  • Shi Y, Gai G, Zhao X, et al. Back propagation neural network (BPNN) simulation model and influence of operational parameters on hydrogen bio-production through integrative biological reactor (IBR) treating wastewater. Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering (ICBBE); 2010 Jun 18–20; Chengdu, China. Piscataway (NJ): IEEE; 2010.
  • Levstek T, Lakota M. The use of artificial neural networks for compounds prediction in biogas from anaerobic digestion – a review. Agricultura. 2010;7:15–22.
  • Almeida JS. Predictive non-linear modeling of complex data by artificial neural networks. Curr Opin Biotechnol. 2002;3:72–76.
  • Huang Y, Kangas LJ, Rasco BA. Applications of artificial neural networks (ANNs) in food science. Crit Rev Food Sci. 2007;47:113–126.
  • Graupe D. Principles of artificial neural networks. Vol. 6, Advanced series on circuits and systems. Singapore: World Scientific; 2007.
  • Gurney K. An introduction to neural networks. London (UK): UCL Press; 1997.
  • Marchitan N, Cojocaru C, Mereuta A, et al. Modeling and optimization of tartaric acid reactive extraction from aqueous solutions: a comparison between response surface methodology and artificial neural network. Sep Purif Technol. 2010;75:273–285.
  • Yu L, Shouyang W, Lai KK. Basic learning principles of artificial neural networks. In: Hillier F, editor. Foreign-exchange-rate forecasting with artificial neural networks. Vol. 107, International series in operations research & management science. New York (NY): Springer; 2007. p. 27–37.
  • Bishop C. Neural networks for pattern recognition. Oxford (UK): Oxford University Press; 1995.
  • Hopfield JJ, Tank DW. Computing with neural circuits: a model. Science. 1986;233:625–633.
  • Zupan J, Gasteiger J. Neural networks in chemistry and drug design. Weinheim (Germany): Wiley-VCH; 1999. p. 9–36.
  • Schalkoff RJ. Artificial neural networks. New York (NY): McGraw-Hill; 1997.
  • Rosales-Colunga LM, Garcia RG, Rodriguez AD. Estimation of hydrogen production in genetically modified E. coli fermentations using an artificial neural network. Int J Hydrog Energy. 2010;35:13186–13192.
  • Nikhil BO, Visa A, Lin CY, et al. An artificial neural network based model for predicting H2 production rates in a sucrose-based bioreactor system. Int J Chem Mol Nucl Mater Metall Eng. 2008;37:20–25.
  • Nasr N, Hafez H, El Naggar MH, et al. Application of artificial neural networks for biohydrogen production. Int J Hydrog Energy. 2013;38:3189–3195.
  • Nasr M, Tawfik A, Ookawara S, et al. Prediction of hydrogen production from starch wastewater using Artificial Neural Networks. Int Water Technol J. 2014;4(1):36–44.
  • Mu Y, Yu HQ. Simulation of biological hydrogen production in a UASB reactor using neural network and genetic algorithm. Int J Hydrog Energy. 2007;32:3308–3314.
  • Karthic P, Joseph S, Arun N, et al. Optimization of biohydrogen production by Enterobacter species using artificial neural network and response surface methodology. J Renew Sust Energy [Internet]. 2013 [cited 2016 Jun 20];5(3):033104. Available from : http://scitation.aip.org/content/aip/journal/jrse/5/3/10.1063/1.4803746
  • Alalayah WM, Alhamed Y, Al-Zahrani AA, et al. Merits of utilizing an artificial neural network as a prediction model for bio-hydrogen production. Revista Chimi (Bucharest). 2014;65(4):458–465.
  • Mullai P, Yogeswari MK, Sridevi K, et al. Artificial neural network (ANN) modeling for hydrogen production in continuous anaerobic sludge blanket filters (ASBF). Singap J Sci Res. 2013;5(1):1–7.
  • Sewsynker Y, Gueguim Kana EB. Intelligent models to predict hydrogen yield in dark microbial fermentations using existing knowledge. Int J Hydrog Energy. 2016;41(30):12929–12940.
  • Elnekave M, Celik SO, Tatlier M, et al. Artificial Neural Network predictions of upflow anaerobic sludge blanket (UASB) reactor performance in the treatment of citrus juice wastewater. Pol J Environ Stud. 2012;21(1):49–56.
  • Kanat G, Saral A. Estimation of biogas production rate in a thermophilic UASB reactor using Artificial Neural Networks. Environ Model Assess. 2009;14:607–614.
  • Mahanty B, Zafar M, Park HS. Characterization of co-digestion of industrial sludges for biogas production by artificial neural network and statistical regression models. Environ Technol. 2013;34:2145–2153.
  • Ozkaya B, Demir A, Bilgili MS. Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environ Modelling Softw. 2007;22:815–822.
  • Harper WF, Jr. Taewoo Y. Using electronic signals and neural networks to monitor the performance of an anaerobic bioreactor. Int J Water Res Environ Eng. 2013;5(9):521–532.
  • Strik D, Domnanovich AM, Zani L, et al. Prediction of trace compounds in biogas from anaerobic digestion using the Matlab neural network toolbox. Environ Modelling Softw. 2005;20:803–810.
  • Tardast A, Rahimnejad M, Najafpour G, et al. Prediction of bioelectricity production by neural network. J Biotechnol Pharm Res. 2012;3(3):62–68.
  • Tardast A, Rahimnejad M, Najafpour G, et al. Use of artificial neural network for the prediction of bioelectricity production in a membrane less microbial fuel cell. Fuel. 2014;117:697–703.
  • Garg A, Vijayaraghavan V, Mahapatra SS, et al. Performance evaluation of microbial fuel cell by artificial intelligence methods. Expert Syst Appl. 2014;41:1389–1399.
  • Furlong VB, Pereira-Filho RD, Margarites AC, et al. Estimating microalgae Synechococcus nidulans daily biomass concentration using neuro-fuzzy network. Ciênc Tecnol Aliment. 2013;33(1):142–147.
  • Sarkar N, Ghosh SK, Bannerjee S, et al. Bioethanol production from agricultural wastes: an overview. Renew Energy. 2013;37:19–27.
  • Wu Z, Shi X. Optimization for high-density cultivation of heterotrophic Chlorella based on a hybrid neural network model. Lett Appl Microbiol. 2006;44:13–18.
  • Betiku E, Taiwo AE. Modeling and optimization of bioethanol production from breadfruit starch hydrolyzate vis-a-vis response surface methodology and artificial neural network. Renew Energy. 2015;74:87–94.
  • Esfahanian M, Nikzad M, Najafpour G, et al. Modeling and optimization of ethanol fermentation using Saccharomyces cerevisiae: response surface methodology and artificial neural network. Chem Ind Chem Eng Q. 2013;19(2):241–252.
  • Grahovac J, Jokić A, Dodić J, et al. Modelling and prediction of bioethanol production from intermediates and byproduct of sugar beet processing using neural networks. Renew Energy. 2016;85:953–958.
  • Sadrzadeh M, Mohammadi T, Ivakpour J, et al. Separation of lead ions from wastewater using electrodialysis: comparing mathematical and neural network modeling. Chem Eng J. 2008;144:431–441.
  • Hagan MT, Demuth HB, Beale M. Neural network design. Boston (MA): PWS Publishing Co; 1996.
  • Hassoun MH. Fundamentals of artificial neural networks. Cambridge (MA): MIT Press; 1995.
  • Lou W, Nakai S. Application of artificial neural networks for predicting the thermal inactivation of bacteria: a combined effect of temperature, pH and water activity. Food Res Int. 2001;34:573–591.
  • Mjalli FS. Neural network model-based predictive control of liquid-liquid extraction contactors. Chem Eng Sci. 2005;60:239–253.1
  • Messikh N, Samar MH, Messikh L. Neural network analysis of liquid-liquid extraction of phenol from wastewater using TBP solvent. Desalination. 2007;208:42–48.
  • Bourquin J, Schmidli H, Hoogevest PV, et al. Advantages of artificial neural networks (ANNs) as alternative modeling technique for data sets showing non-linear relationships using data from a galenical study on a solid dosage form. Eur J Pharm Sci. 1998;7:5–16.
  • Gueguim Kana EB, Oloke JK, Lateef A, et al. Comparative evaluation of artificial neural network coupled genetic algorithm and response surface methodology for modelling and optimization of citric acid production by Aspergillus niger MCBN297. Chem Eng Trans. 2012;27:397–402.
  • Jönsson O, Polman E, Jensen JK, et al. Sustainable gas enters the European gas distribution system [Internet]. Hørsholm: Danish Gas Technology Center; 2013. Available from: http://www.dgc.eu/sites/default/files/filarkiv/documents/C0301_sustainable_gas.pdf
  • Wellinger A, Linberg A. Biogas upgrading and utilization. In: Tustin J, editor. Task 24: Energy from biological conversion of organic waste IEA bioenergy. New Zealand: Carlin Varlenti Ltd; 2000. p. 46–48.
  • Park WJ, Ahn JH. Optimization of microwave pretreatment conditions to maximize methane production and methane yield in mesophilic anaerobic sludge digestion. Environ Technol. 2011;32:1533–1540.
  • Cheng SA, Logan BE. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci USA. 2007;104(47):18871–18873.
  • Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 2006;14:512–518.
  • Logan BE, Hamelers S, Rozendal R, et al. Microbial fuel cells: methodology and technology. Environ Sci Technol. 2006;40(17):5181–5192.
  • Kinoshita K, McLarnon F, Cairns E. Fuel cell handbook: prepared by Lawrence Berkeley Laboratory. San Diego (CA): University of California; 1988. p. 2–4.
  • Wang CY. Fundamental models for fuel cell engineering. Chem Rev. 2004;104(10):4727–4766.
  • Gil-Carrera L, Escapa A, Carracedo B, et al. Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages. Bioresour Technol. 2013;146:63–69.
  • Tartakovsky B, Mehta P, Santoyo G, et al. Maximizing hydrogen production in a microbial electrolysis cell by real time optimization of applied voltage. Int J Hydrog Energy. 2011;36:10557–10564.
  • Yahya AZ, Hussain MA, Wahab AKA. Modeling, optimization, and control of microbial electrolysis cells in a fed-batch reactor for production of renewable biohydrogen gas. Int J Energy Res. 2015;39(4):557–572.
  • Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bio products. Biotechnol Adv. 2011;29:686–702.
  • Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65(6):635–648.
  • Wu X, Ruan R, Du Z, et al. Current status and prospects of biodiesel production from microalgae. Energies. 2012;5:2667–2682.
  • Jahirul MI, Brown RJ, Senadeera W, et al. Estimation of biodiesel properties from chemical composition – an artificial neural network (ANN) approach. In: Ringo E, editor. Proceedings of the International Conference on Environment and Renewable Energy; 2014 May 7–8; Paris. City Internationale Universitaire de Paris; 2014. p. 1–8.
  • Baroutian S, Aroua MK. Estimation of vegetable oil-based ethyl esters biodiesel densities using artificial neural networks. J Appl Sci. 2008;8:3005–3011.
  • Kumar J, Bansal A, Jha MK. Comparison of statistical and neural network techniques in predicting physical properties of various mixtures of diesel and biodiesel. In: Ao SI, Douglas C, Grundfest WS, Schruben L, Wu X, editors. Proceedings of the World Congress on Engineering and Computer Science (WCECS 2007); 2007 Oct 24–26; San Francisco. Hong Kong: Newswood Limited, IAENG; 2000. p. 95–98.
  • Galvão RM, Santana TS, Fontes CHO, et al. Modeling of biomass production of Haematococcus pluvialis. Appl Math. 2013;4:50–56.
  • Goldberg DE. Genetic algorithms in search, optimization, and machine learning. New York (NY): Addison-Wesley; 1989.
  • Renner G, Ekárt A. Genetic algorithms in computer aided design. Comput Aided Des. 2003;35:709–726.
  • Shopova EG, Bancheva NGV. BASIC – a genetic algorithm for engineering problems solution. Comput Chem Eng. 2006;30:1293–1309.
  • Davis L. Handbook of genetic algorithms. New York (NY): Van Nostrand Reinhold; 1991.
  • Sarkar D, Modak JM. Optimization of fed-batch bioreactor using genetic algorithm. Chem Eng Sci. 2003;58:2283–2296.
  • Sexton RS, Dorsey RE, Johnson JD. Optimization of neural networks: a comparative analysis of the genetic algorithm and simulated annealing. Eur J Oper Res. 1999;114:589–601.
  • Pasandideh SH, Niaki ST. Multi-response simulation optimization using genetic algorithm within desirability function framework. Appl Math Comput. 2006;175:366–382.
  • Giordano PC, Martínez HD, Iglesias AA, et al. Application of response surface methodology and artificial neural networks for optimization of recombinant Oryza sativa non-symbiotic hemoglobin 1 production by Escherichia coli in medium containing by-product glycerol. Bioresour Technol. 2010;101:7537–7544.