1,007
Views
5
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Allopolyploidy-induced rapid genomic changes in newly generated synthetic hexaploid wheat

, , , &
Pages 236-242 | Received 08 Apr 2016, Accepted 13 Dec 2016, Published online: 30 Dec 2016

References

  • Ramsey J, Schemske D. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Evol Syst. 1998;29:467–501.
  • Huang S, Sirikhachornkit A, Su X, et al. Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA. 2002;99:8133–8138.
  • Kimber G, Feldman M. Wild wheats: an introduction. Columbia (MO): College of Agriculture; 1987. p. 1–142. (Special Report; no. 353).
  • Van Slageren MW. Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Vol. 94–97, Wageningen Agricultural University Papers. Wageningen (Netherlands): ICARDA/Agricultural University; 1994.
  • Snape JW, Butterworth K, Whitechurch E, et al. Waiting for fine times: genetics of flowering time in wheat. Euphytica. 2001;119:185–190.
  • Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploidy wheat under domestication. Science. 2007;316:1862–1866.
  • Levy AA, Feldman M. Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc. 2004;82:607–613.
  • Feldman M, Levy AA. Allopolyploidy – a shaping force in the evolution of wheat genomes. Cytogenet Genome Res. 2005;109:250–258.
  • Feldman M, Levy AA. Genome evolution in allopolyploid wheat – a revolutionary reprogramming followed by gradual changes. J Genet Genomics. 2009;36:511–518.
  • Feldman M, Levy AA. Genome evolution due to allopolyploidization in wheat. Genetics. 2012;192:763–774.
  • Ma J, Stiller J, Wei YM, et al. Extensive pericentric rearrangements in the bread wheat (Triticum aestivum L.) genotype “Chinese Spring” revealed from chromosome shotgun sequence data. Genome Biol Evol. 2014;6(11):3039–3048.
  • Griffiths S, Sharp R, Foote TN, et al. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature. 2006;439:749–752.
  • Yousafzai FK, Al-Kaff N, Moore G. Structural and functional relationship between the Ph1 locus protein 5B2 in wheat and CDK2 in mammals. Funct Integr Genomic. 2010;10:157–166.
  • Yu M, Chen GY, Zhang LQ, et al. QTL mapping for important agronomic traits in synthetic hexaploid wheat derived from Aegiliops tauschii ssp. Tauschii. J Integr Agric. 2014;13(9):1835–1844
  • Yu M, Chen GY, Pu ZE, et al. Quantitative trait locus mapping for growth duration and its timing components in wheat. Mol Breeding. 2015;35(44):1–11.
  • Zhang LQ, Liu DC, Yan ZH, et al. Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat. Sci China Ser C. 2004;47:553–561.
  • Yu M, Mao SL, Chen GY, et al. QTLs for uppermost internode and spike length: whether they affect wheat height at an individual QTL level in two RIL populations? Euphytica. 2014;200(1):95–108.
  • Akbari M, Wenzl P, Caig V, et al. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet. 2006;113:1409–1420.
  • Yu M, Chen Gy. Conditional QTL mapping for waterlogging tolerance in two RILs populations of wheat. SpringerPlus [Internet]. 2013 [cited 2016 Jul 21];2:1–7. Available from: https://springerplus.springeropen.com/articles/10.1186/2193-1801-2-245
  • Shaked H, Kashkush K, Ozkan H, et al. Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell. 2001;13:1749–1759.
  • Bento M, Gustafson JP, Viegas W, et al. Size matters in Triticeae polyploids: larger genomes have higher remodeling. Genome. 2011;54:175–183.
  • Kashkush K, Feldman M, Levy AA. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics. 2002;160:1651–1659.
  • Eilam T, Anikster Y, Millet E, et al. Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. Genome. 2008;51:616–627.
  • Eilam T, Anikster Y, Millet E, et al. Genome size in diploids, allopolyploids, and autopolyploids of mediterranean triticeae. Genome. 2010;52(3):275–285.
  • Pestsova E, Ganal MW, Röder MS. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome. 2000;43:689–697.
  • Senerchia N, Wicker T, Felber F, et al. Evolutionary dynamics of retrotransposons assessed by high throughput sequencing in wild relatives of wheat. Genome Biol Evol. 2013;5:1010–1020.
  • Senerchia N, Felber F, Parisod C. Contrasting evolutionary trajectories of multiple retrotransposons following independent allopolyploidy in wild wheats. New Phytol. 2014;202(3):975–985.
  • Charles M, Belcram H, Just J, et al. Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics. 2008;180:1071–1086.
  • Fedoroff NV. Transposable elements, epigenetics, and genome evolution. Science. 2012;338:758–767.
  • Feldman M, Levy AA. Origin and evolution of wheat and related triticeae species. In: Molnár-Láng M, Ceoloni C, Doležel J, editors. Alien introgression in wheat. Cytogenetics, molecular biology, and genomics. New York (NY): Springer; 2015. p. 21–76.
  • Ozkan H, Levy AA, Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops–Triticum) group. Plant Cell. 2001;13(8):1735–1747.
  • Salina EA, Numerova OM, Ozkan H, et al. Alterations in subtelomeric tandem repeats during early stages of allopolyploidy in wheat. Genome. 2004;47:860–867.
  • Pu ZE, Yu M, He QY, et al. Quantitative trait loci associated with micronutrient concentrations in two recombinant inbred wheat lines. J Integr Agric. 2014;13(11):2322–2329.