6,005
Views
22
CrossRef citations to date
0
Altmetric
Review; Medical Biotechnology (MB)

Main properties of nanocrystalline hydroxyapatite as a bone graft material in treatment of periodontal defects. A review of literature

, , &
Pages 215-220 | Received 01 Jul 2016, Accepted 10 Jan 2017, Published online: 31 Jan 2017

References

  • Fleckenstein KB, Cuenin MF, Peacock ME, et al. Effect of a hydroxyapatite tricalcium phosphate alloplast on osseous repair in the rat calvarium. J Periodontol. 2006;77(1):39–45.
  • Lang NP. Focus on intrabony defects – conservative therapy. Periodontology 2000;22:51–58.
  • Scabbia A, Trombelli L. A comparative study on the use of a HA/collagen/chondroitin sulphate biomaterial (Biostite) and a bovine-derived HA xenograft (Bio-Oss) in the treatment of deep intra-osseous defects. J Clin Periodontol. 2004;31(5):348–355.
  • Aichelmann-Reidy ME, Yukna RA. Bone replacement grafts. The bone substitutes. Dent Clin North Am. 1998;42(3):491–503.
  • Saffar JL, Colombier ML, Detienville R. Bone formation in tricalcium phosphate-filled periodontal intrabony lesions. Histological observations in humans. J Periodontol. 1990;61(4):209–216.
  • Kenney EB, Lekovic V, Han T, et al. The use of a porous hydroxylapatite implant in periodontal defects. I. Clinical results after six months. J Periodontol. 1985;56(2):82–88.
  • Ganeles J, Listgarten MA, Evian CI. Ultrastructure of durapatite-periodontal tissue interface in human intrabony defects. J Periodontol. 1986;57(3):133–140.
  • Newman MG, Takei H, Klokkevold PR, et al. Carranza's clinical periodontology. 12th ed. St. Louis (MO): Saunders Elsevier; 2014.
  • Mann S. Principles and concepts in bioinorganic materials chemistry. New York (NY): Oxford University Press; 2001 p. 324.
  • Wang L, Nancollas GH. Calcium orthophosphates: crystallization and dissolution. Chem Rev. 2008;108(11):4628–4669.
  • Meffert RM, Thomas JR, Hamilton KM, et al. Hydroxylapatite as an alloplastic graft in the treatment of human periodontal osseous defects. J Periodontol. 1985;56(2):63–73.
  • Eichert C, Drouet C, Sfihi H, et al. Nanocrystalline apatite-based biomaterials: synthesis, processing and characterization. In: Kendall JB, editor. Biomaterials research advances. Hauppauge (NY): Nova Science Publishers, Inc; 2007. p. 93–143.
  • Kawai K, Larson BJ, Ishise H, et al. Calcium-based nanoparticles accelerate skin wound healing. PLoS One. 2011;6(11):e27106.
  • Kanaya S, Nemoto E, Sakisaka Y, et al. Calcium-mediated increased expression of fibroblast growth factor-2 acts through NF-kappaB and PGE2/EP4 receptor signaling pathways in cementoblasts. Bone. 2013;56(2):398–405.
  • Yang C, Lee J-S, Jung UW, et al. Periodontal regeneration with nano-hyroxyapatite-coated silk scaffolds in dogs. J Periodontal Implant Sci. 2013;43(6):315–322.
  • Saleh RG, El Tokhey AO, El-Guindy HM. Evaluation of hydroxyapatite nanoparticles with and without silver nanoparticles in the treatment of induced periodontitis in dogs. J Am Sci. 2014;10:21–33.
  • Hossein Shahoon RH, Yadegari Z, Hosseiny VAM, et al. The comparison of silver and hydroxyapatite nanoparticles biocompatibility on L929 fibroblast cells. J Nanomed Nanotechol. 2013;4(4):1000173.
  • Sun W, Chu C, Wang J, et al. Comparison of periodontal ligament cells responses to dense and nanophase hydroxyapatite. J Mater Sci Mater Med. 2007;18(5):677–683.
  • Schnettler R, Alt SJ, Pavlidis V, et al. PD Calcium phosphate-based bone substitutes. Eur J Trauma. 2004;1(30):219–229.
  • Thian ES, Huang J, Ahmad Z et al. Influence of nanohydroxyapatite patterns deposited by electrohydrodynamic spraying on osteblast response. J Biomed Mater Res. 2008;865:188–194.
  • Pilloni A, Pompa G, Saccucci M, et al. Analysis of human alveolar osteoblast behavior on a nano-hydroxyapatite substrate: an in vitro study. BMC Oral Health. 2014;14:22.
  • Webster TJ, Ergun C, Doremus RH, et al. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000;21(17):1803–1810.
  • Liu X, Zhao MZ, Lu JX, et al. Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities. Int J Nanomed. 2012;7:1239–1250.
  • Motskin M, Wright DM, Muller K, et al. Hydroxyapatite nano and microparticles: correlation of particle properties with cytotoxicity and biostability. Biomaterials. 2009;30(19):3307–3317.
  • Hsieh MF, Li JK-J, Lin C-AJ, et al. Tracking of cellular uptake of hydrophilic CdSe/ZnS quantum dots/hydroxyapatite composites nanoparticles in MC3T3-E1 osteoblast cells. J Nanosci Nanotechnol. 2009;9(4):2758–2762.
  • Detsch R, Hagmeyer D, Neumann M, et al. The resorption of nanocrystalline calcium phosphates by osteoclast-like cells. Acta Biomater. 2010;6:3223–3233.
  • Matesanz MC, Linares J, Lilue I, et al. Nanocrystalline silicon substituted hydroxyapatite effects on osteoclast differentiation and resorptive activity. J Mater Chem. 2014;2:2910–2919.
  • Jahangirnezhad M, Kazeminezhad I, Saki Gh, et al. The effects of nanohydroxyapatite on bone regeneration in rat calvarial defects. Am J Res Commun. 2013;1(4):302–316.
  • Cecilia Vullo MM, Rossi G, Tambella AM et al. Use of nanohydroxyapatite in regenerative therapy in dogs affected by periodontopathy. Ann Clin Lab Res. 2015;3(2):18.
  • Götz W, Gerber T, Michel B, et al. Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone(r)) osteogenesis: a study on biopsies from human jaws. Clin Oral Implants Res. 2008;19(10):1016–1026.
  • Huber FX, McArthur N, Hillmeier J, et al. Void filling of tibia compression fracture zones using a novel resorbable nanocrystalline hydroxyapatite paste in combination with a hydroxyapatite ceramic core: first clinical results. Arch Orthop Trauma Surg. 2006;126(8):533–540.
  • Zuev VP, Dmitrieva LA, Pankratov AS, et al. [The comparative characteristics of stimulators of reparative osteogenesis in the treatment of periodontal diseases]. Stomatologiia (Mosk). 1996;75(5):31–34.
  • Talal A, McKay IJ, Tanner KE, et al. Effects of hydroxyapatite and PDGF concentrations on osteoblast growth in a nanohydroxyapatite-polylactic acid composite for guided tissue regeneration. J Mater Sci Mater Med. 2013;24(9):2211–2221.
  • Busenlechner D, Huber CD, Vasak C, et al. Sinus augmentation analysis revised: the gradient of graft consolidation. Clin Oral Implants Res. 2009;20(10):1078–1083.
  • Bertoldi C, Zaffe D. In vivo comparison of two bone substitutes in the distal femur of the rabbit. Int J Oral Maxillofac Implants. 2012;27(1):119–127.
  • Scheel J, Weimans S, Thiemann A, et al. Exposure of the murine RAW 264.7 macrophage cell line to hydroxyapatite dispersions of various composition and morphology: assessment of cytotoxicity, activation and stress response. Toxicol In Vitro. 2009;23(3):531–538.
  • Du B, Liu W, Deng Y, et al. Angiogenesis and bone regeneration of porous nano-hydroxyapatite/coralline blocks coated with rhVEGF165 in critical-size alveolar bone defects in vivo. Int J Nanomed. 2015;10:2555–2565.
  • Lock J, Liu H. Nanomaterials enhance osteogenic differentiation of human mesenchymal stem cells similar to a short peptide of BMP-7. Int J Nanomed. 2011;6:2769–2777.
  • Zhou G, Li Y, Xiao W, et al. Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex. J Biomed Mater Res A. 2008;85A(4):929–937.
  • Jain A, Pahuja CRB. Comparative evaluation of the efficacy of calcium sulfate bone grafts in crystalline and nano-crystalline forms in fresh extraction socket sites: A radiographic and histological pilot study. Int JOral Implantol Clin Res. 2012;3(1):58–61.
  • Pezzatini S, Morbidelli L, Solito R, et al. Nanostructured HA crystals up-regulate FGF-2 expression and activity in microvascular endothelium promoting angiogenesis. Bone. 2007;41(4):523–534.
  • Thorwarth M, Schultze-Mosgau S, Kessler P, et al. Bone regeneration in osseous defects using a resorbable nanoparticular hydroxyapatite. J Oral Maxillofac Surg. 2005;63(11):1626–1633.
  • Canullo L, Wiel Marin G, Tallarico M, et al. Histological and histomorphometrical evaluation of postextractive sites grafted with Mg-enriched nano-hydroxyapatite: A randomized controlled trial comparing 4 versus 12 months of healing. Clin Implant Dent Relat Res. 2015;18:973–983.
  • Chitsazi MT, Shirmohammadi A, Faramarzie M, et al. A clinical comparison of nano-crystalline hydroxyapatite (Ostim) and autogenous bone graft in the treatment of periodontal intrabony defects. Med Oral Patol Oral Cir Bucal. 2011;16(3):e448–e453.
  • Elyan Al Machot TH, Lorenz K, Khalili I, et al. Clinical outcomes after treatment of periodontal intrabony defects with nanocrystalline hydroxyapatite (Ostim) or enamel matrix derivatives (Emdogain): A randomized controlled clinical trial. BioMed Res Int. 2014; Article ID 786353.
  • Prathap S, Hegde S, Kashyap R, et al. Clinical evaluation of porous hydroxyapatite bone graft (Periobone G) with and without collagen membrane (Periocol) in the treatment of bilateral grade II furcation defects in mandibular first permanent molars. J Indian Soc Periodontol. 2013;17(2):228–234.
  • Singh VP, Nayak DG, Uppoor AS, et al. Clinical and radiographic evaluation of nano-crystalline hydroxyapatite bone graft (Sybograf) in combination with bioresorbable collagen membrane (Periocol) in periodontal intrabony defects. Dent Res J (Isfahan). 2012;9(1):60–67.
  • Seifi M, Arayesh A, Shamloo N, et al. Effect of nanocrystalline hydroxyapatite socket preservation on orthodontically induced inflammatory root resorption. Cell J. 2015;16(4):514–527.
  • Kamboj M, Harinder RA, Gupta, Comparative evaluation of the efficacy of synthetic nanocrystalline hydroxyapatite bone graft (Ostim®) and synthetic microcrystalline hydroxyapatite bone graft (Osteogen®) in the treatment of human periodontal intrabony defects: A clinical and denta scan study. J Indian Soc Periodontol. 2016.
  • Bansal M, Kaushik M, Khattak BP et al. Comparison of nanocrystalline hydroxyapatite and synthetic resorbable hydroxyapatite graft in the treatment of intrabony defects: A clinical and radiographic study. J Indian Soc Periodontol. 2014;18(2):213–219.
  • Kasaj A, Röhrig B, Zafiropoulos G-G, et al. Clinical evaluation of nanocrystalline hydroxyapatite paste in the treatment of human periodontal bony defects – A randomized controlled clinical trial: 6-month results. J Periodontol. 2008;79(3):394–400.
  • Elgendy EA, Shady TEA, Clinical and radiographic evaluation of nanocrystalline hydroxyapatite with or without platelet-rich fibrin membrane in the treatment of periodontal intrabony defects. J Indian Soc Periodontol. 2015;19(1):61–65.
  • Rahman H, Chandra A, Aziz A et al. Platelet rich fibrin and nanocrystalline hydroxyapatite with collagen combination in treatment of periapical lesion: A novel clinical approach. British J Med Med Res. 2015;5(2):275–282.
  • Figliuzzi MM, Giudice A, Pileggi S, et al. Biomimetic hydroxyapatite used in the treatment of periodontal intrabony pockets: clinical and radiological analysis. Ann Stomatol (Roma). 2016;7(1–2):16–23.
  • Cecilia Vullo MM, Rossi G, Tambella AM et al. Use of nanohydroxyapatite in regenerative therapy in dogs affected by periodontopathy: Preliminary results. Ann Clin Lab Res. 2015;3(2):18.