1,251
Views
2
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Adaptive evolution of the rbcL gene in the genus Rheum (Polygonaceae)

, , &
Pages 493-498 | Received 30 May 2016, Accepted 25 Jan 2017, Published online: 10 Feb 2017

References

  • Kao TC, Cheng CY. Synopsis of the Chinese Rheum. Acta Phytotax Sin. 1975;13(3):69–82.
  • Li AR. Flora Republicae Popularis Sinicae [Flora of the People's Republic of China]. Beijing: Science Press; 1998. p. 617. Chinese.
  • Wan DS, Wang AL, Zhang X, et al. Gene duplication and adaptive evolution of the CHS-like genes within the genus Rheum (Polygonaceae). Biochem Syst Ecol. 2011;39(4–6):651–659.
  • Sun YS, Wang AL, Wan DS, et al. Rapid radiation of Rheum (Polygonaceae) and parallel evolution of morphological traits. Mol Phylogenet Evol. 2012;63(1):150–158.
  • Wan DS, Sun Y, Zhang X, et al. Multiple ITS copies reveal extensive hybridization within Rheum (Polygonaceae), a genus that has undergone rapid radiation. PLoS One [ Internet]. 2014 [ cited 2015 Sep 12];9(2):e89769. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0089769
  • Xie ZQ. Eco-geographical distribution of the species from Rheum L. Polygonaceae in China. China's biodiversity conservation toward the 21st century. Beijing: China Forest Press; 2000. p. 230–236.
  • Liu BB, Opgenoorth L, Miehe G, et al. Molecular bases for parallel evolution of translucent bracts in an alpine ‘‘glasshouse’’ plant Rheum alexandrae (Polygonaceae). J Syst Evol. 2013;51(2):134–141.
  • Lev-Yadun S, Katzir G, Neeman G. Rheum palaestinum (desert rhubarb), a self-irrigating desert plant. Naturwiss. 2009;96(3):393–397.
  • Zhou DW, Zhou J, Meng LH, et al. Duplication and adaptive evolution of the COR15 genes within the highly cold-tolerant Draba lineage (Brassicaceae). Gene. 2009;441(1–2):36–44.
  • Li J, Liu H, Mao S, et al. Adaptive evolution of ndhF gene in the genus Rheum (Polygonaceae). Guihaia. 2016;36(1):101–106.
  • Lin MT, Occhialini A, Andralojc PJ, et al. A faster Rubisco with potential to increase photosynthesis in crops. Nature. 2014;513(7519):547–550.
  • Kapralov MV, Filatov DA. Wide spread positive selection in the photosynthetic Rubisco enzyme. BMC Evol Biol [ Internet]. 2007 [ cited 2015 Sep 8];7(3):73. Available from: http://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-7-73
  • Christin PA, Salamin N, Muasya AM, et al. Evolutionary switch and genetic convergence on rbcL following the evolution of C4 photosynthesis. Mol Biol Evol. 2008;25(11):2361–2368.
  • Galmes J, Andralojc PJ, Kapralov MV, et al. Environmentally driven evolution of Rubisco and improved photosynthesis and growth within the C3 genus Limonium (Plumbaginaceae). New Phytol. 2014;203(3):989–999.
  • Iida S, Miyagi A, Aoki S, et al. Molecular adaptation of rbcL in the heterophyllous aquatic plant potamogeton. PLoS One [ Internet]. 2009 [ cited 2015 Sep 8];4(2):e4633. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004633
  • Liu L, Zhao B, Zhang Y, et al. Adaptive evolution of the rbcL gene in Brassicaceae. Biochem Syst Ecol. 2012;44(1):13–19.
  • Thompson JD, Gibson TJ, Plewniak F, et al. The Clustal X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(25):4876–4882.
  • Hall TA, BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999;41:95–98.
  • Swofford DL. PAUP*: phylogenetic analysis using parsimony (*and other methods).Sunderlande (MA): Sinauer Associates; 2003.
  • Yang ZH. PAML 4: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997;13(5):555–556.
  • Yang ZH, Nielsen, R. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol. 2002;19(6):908–917.
  • Yang ZH, Wendy SWW, Rasmus N. Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol. 2005;22(4):1107–1118.
  • Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195–201.
  • Wang AL, Yang MH, Liu JQ. Molecular phylogeny, recent radiation and evolution of gross morphology of the Rhubarb genus Rheum Polygonaceae inferred from chloroplast DNA trnL-F sequences. Ann Bot. 2005;96(3):489–498.
  • Spreitzer RJ, Saluvcci ME. Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol. 2002;53(4):449–475.
  • Galmés J, Flexas J, Keys AJ, et al. Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ. 2005;28(5):571–579.
  • Young JN, Goldman JAL, Kranz SA, et al. Slow carboxylation of Rubisco constrains the rate of carbon fixation during Antarctic phytoplankton blooms. New Phytol. 2015;205(1):172–181.
  • He XW. Study on the molecular mechanism in Alpine plant response to cold-stress and UV-B radiation stress. Sichuan: College of Life Sciences, Sichuan University; 2005.
  • Fan X, Sha LN, Yang RW, et al. Phylogeny and evolutionary history of Leymus (Triticeae; Poaceae) based on a single-copy nuclear gene encoding plastid acetyl-CoA carboxylase. BMC Evol Biol [ Internet]. 2009 [ cited 2017 Jan 10];9(1):247. Available from: http://bmcevolbiol.biomedcentral.com/articles/10.1186/1471-2148-9-247
  • Shi YF, Li JJ, Li BY. Uplift and environmental changes of Qinghai–Tibetan Plateau in the late Cenozoic. Guangzhou: Guangdong Science and Technology Press; 1998. p. 183.