2,164
Views
13
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Influence of environmental and nutritional conditions on yeast–mycelial dimorphic transition in Trichosporon cutaneum

, , , , &
Pages 516-526 | Received 13 Sep 2016, Accepted 03 Feb 2017, Published online: 28 Feb 2017

References

  • Borges-Walmsley MI, Walmsley AR. cAMP signalling in pathogenic fungi: control of dimorphic switching and pathogenicity. Trends Microbiol. 2000;8:133–141.
  • Sánchez-Martínez C, Pérez-Martín J. Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis—similar inputs, different outputs. Curr Opin Microbiol. 2001;4:214–221.
  • Nadal M, Gold SE. Dimorphism in fungal plant pathogens. FEMS Microbiol Lett. 2008;284:127–134.
  • Sanna ML, Zara S, Zara G et al., Pichia fermentans dimorphic changes depend on the nitrogen source. Fungal Biol. 2012;116:769–777.
  • Berrocal A, Oviedo C, Nickerson KW et al., Quorum sensing activity and control of yeast-mycelium dimorphism in Ophiostoma floccosum. Biotechnol Lett. 2014;36:1503–1513.
  • Bellou S, Makri A, Triantaphyllidou IE et al., Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Microbiology. 2014;160:807–817.
  • Papp L, Sipiczki M, Holb IJ et al., Optimal conditions for mycelial growth of Schizosaccharomyces japonicus cells in liquid medium: it enables the molecular investigation of dimorphism. Yeast. 2014;31:475–482.
  • Coelho MAZ, Belo I, Pinheiro R et al., Effect of hyperbaric stress on yeast morphology: study by automated image analysis. Appl Microbiol Biotechnol. 2004;66:318–324.
  • Nemecek JC, Marcel W, Klein BS. Global control of dimorphism and virulence in fungi. Science. 2006;312:583–588.
  • Klein BS, Tebbets B. Dimorphism and virulence in fungi. Curr Opin Microbiol. 2007;10:314–319.
  • Gauthier GM. Dimorphism in fungal pathogens of mammals, plants, and insects. PLoS Pathog. 2015;11(2):e1004608.
  • Martínez-Espinoza AD, Ruiz-Herrera J, León-Ramírez CG et al., MAP kinase and cAMP signaling pathways modulate the pH-induced yeast-to-mycelium dimorphic transition in the corn smut fungus Ustilago maydis. Curr Microbiol. 2004;49:274–281.
  • Zhu Y, Fang HM, Wang YM et al., Ras1 and Ras2 play antagonistic roles in regulating cellular cAMP level, stationary-phase entry and stress response in Candida albicans. Mol Microbiol. 2009;74:862–875.
  • Sanna ML, Zara G, Zara S et al., A putative phospholipase C is involved in Pichia fermentans dimorphic transition. Biochim Biophys Acta. 2014;1840:344–349.
  • Giobbe S, Marceddu M, Scherm B et al., The strange case of a biofilm-forming strain of Pichia fermentans which controls Monilinia brown rot on apple but is pathogenic on peach fruit. FEMS Yeast Res. 2007;7:1389–1398.
  • Nickerson KW, Atkin AL, Hornby JM. Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol. 2006;72:3805–3813.
  • Palande AS, Kulkarni SV, León-Ramirez C et al., Dimorphism and hydrocarbon metabolism in Yarrowia lipolytica var. indica. Arch Microbiol. 2014;196:545–556.
  • Kim SK, El BK, Ben MC. Amino acids mediate colony and cell differentiation in the fungal pathogen Candida parapsilosis. Microbiology. 2006;152:2885–2894.
  • Heintz-Buschart A, Eickhoff H, Hohn E et al., Identification of inhibitors of yeast-to-hyphae transition in Candida albicans by a reporter screening assay. J Biotechnol. 2013;164:137–142.
  • Ryan O, Shapiro RS, Kurat CF et al., Global gene deletion analysis exploring yeast filamentous growth. Science. 2012;337:1353–1356.
  • Thevelein JM, de Winde JH. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol. 1999;33:904–918.
  • Román E, Arana DM, Nombela C et al., MAP kinase pathways as regulators of fungal virulence. Trends Microbiol. 2007;15:181–190.
  • Gold S, Duncan G, Barrett K et al., cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev. 1994;8:2805–2816.
  • Durrenberger F, Wong K, Kronstad J W. Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in Ustilago maydis. Proc Natl Acad Sci. 1998;95:5684–5689.
  • Rupp S, Summers E, Lo HJ et al., MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 1999;18:1257–1269.
  • Lo HJ, Köhler JR, DiDomenico B et al., Nonfilamentous C. albicans mutants are avirulent. Cell. 1997;90:939–949.
  • Brown AJP, Gow NAR. Regulatory networks controlling Candida albicans morphogenesis. Trends Microbiol. 1999;7:333–338.
  • Feng Q, Summers E, Guo B et al., Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol. 1999;181:6339–6346.
  • Hartmann HA, Kahmann R, Bolker M. The pheromone response factor coordinates filamentous growth and pathogenic development in Ustilago maydis. EMBO J. 1996;15:1632–1641.
  • Kahmann R, Basee C, Feldbrugge M. Fungal-plant signalling in the Ustilago maydis-maize pathosystem. Curr Opin Microbiol. 1999;2:647–650.
  • Moon NJ, Hammond EG, Glatz BA. Conversion of cheese whey and whey permeate to oil and single-cell protein. J Dairy Sci. 1978;61:1537–1547.
  • Anderson J J, Dagley S. Catabolism of aromatic acids in Trichosporon cutaneum. J Bacteriol. 1980;141:534–543.
  • Sieńko M, Stępień PP, Paszewski A. Generation of genetic recombinants in Trichosporon cutaneum by spontaneous segregation of protoplast fusants. J Gen Microbiol. 1992;138:1409–1412.
  • Gerginova M, Zlateva P, Peneva N et al., Influence of phenolic substrates utilised by yeast Trichosporon cutaneum on the degradation kinetics. Biotechnol Biotec Equip. 2014;281:33–37.
  • Wang Y, Gong Z, Yang X et al., Microbial lipid production from pectin-derived carbohydrates by oleaginous yeasts. Process Biochem. 2015;50:1097–1102.
  • Hu C, Wu S, Wang Q et al., Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnol Biofuels. 2011;4:25.
  • Yuan JY, Ai1 ZZ, Zhang ZB et al., Microbial oil production by Trichosporon cutaneum B3 using cassava starch. Chin J Biotechnol. 2011;27:453–460.
  • Liu W, Wang Y, Yu Z et al., Simultaneous saccharification and microbial lipid fermentation of corn stover by oleaginous yeast Trichosporon cutaneum. Biores Technol. 2012;118:13–18.
  • Gao Q, Cui Z, Zhang J et al., Lipid fermentation of corncob residues hydrolysate by oleaginous yeast Trichosporon cutaneum. Biores Technol. 2014;152:552–556.
  • Depree J, Emerson GW, Sullivan PA. The cell wall of the oleaginous yeast Trichosporon cutaneum. J Gen Microbiol. 1993;139:2123–2133.
  • Morales-Vargas AT, Domínguez A, Ruiz-Herrera J. Identification of dimorphism-involved genes of Yarrowia lipolytica by means of microarray analysis. Res Microbiol. 2012;163:378–387.
  • Morschhäuser J. Nitrogen regulation of morphogenesis and protease secretion in Candida albicans. Int J Med Microbiol. 2011;301:390–394.
  • Orlova M, Ozcetin H, Barrett L et al., Roles of the Snf1-activating kinases during nitrogen limitation and pseudohyphal differentiation in Saccharomyces cerevisiae. Eukaryot Cell. 2010;9:208–214.
  • Donaton MC, Holsbeeks I, Lagatie O et al., The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. Mol Microbiol. 2003;50:911–929.
  • Maidan MM, Thevelein JM, Van Dijck P. Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-proteincoupled receptor Gpr1. Biochem Soc Trans. 2005;33:291–293.
  • Xue C, Bahn YS, Cox GM et al., G proteincoupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Mol Biol Cell. 2006;17:667–679.
  • González-López CI, Ortiz-Castellanos L, Ruiz-Herrera J. The ambient pH response rim rathway in Yarrowia lipolytica: identification of YlRIM9, and characterization of its role in dimorphism. Curr Microbiol. 2006;53:8–12.
  • Selvig K, Alspaugh JA. pH response pathways in fungi: adapting to host-derived and environmental signals. Mycobiology. 2011;39:249–256.
  • Biswas S, Van Dijck P, Datta A. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev. 2007;71:348–376.
  • Fang QH, Zhong JJ. Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-ganoderic acid and polysaccharide. Biochem Eng J. 2002;10:61–66.
  • Shih IL, Tsai KL, Hsieh C. Effects of culture conditions on the mycelial growth and bioactive metabolite production in submerged culture of Cordyceps militaris. Biochem Eng J. 2007;33:193–201.
  • Naruzawa ES, Bernier L. Control of yeast-mycelium dimorphism in vitro, in Dutch elm disease fungi by manipulation of specific external stimuli. Fungal Biol. 2014;118:872–884.
  • Suwunnakorn S, Jr CC, Kummasook A et al., Role of the yakA gene in morphogenesis and stress response in Penicillium marneffei. Microbiology. 2014;160:1929–1939.
  • Marty AJ, Gauthier GM. Blastomyces dermatitidis, septins CDC3, CDC10, and CDC12, impact the morphology of yeast and hyphae, but are not required for the phase transition. Med Mycol. 2013;51:93–102.