4,830
Views
6
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Isolation, identification and characterization of biotechnologically important bacteria from microflora of Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae)

, , &
Pages 505-510 | Received 22 Aug 2016, Accepted 08 Feb 2017, Published online: 20 Feb 2017

References

  • Krishnan M, Bharathiraja C, Pandiarajan J et al. Insect gut microbiome – an unexploited reserve for biotechnological application. Asian Pac J Trop Biomed. 2014;4:16–21.
  • Nardi JB, Mackie RI, Dawson JO. Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems. J Insect Physiol. 2002;48:751–763.
  • Mrazek J, Strosova L, Fliegerova K et al. Diversity of ınsect ıntestinal microflora. Folia Microbiol. 2008;53:229–233.
  • Reeson AF, Jankovic TK, Kasper ML et al. Application of 16 S rDNA–DGGE to examine the microbial ecology associated with a social wasp Vespula germanica. Insect Mol Biol. 2003;12:85–91.
  • Özdal Ö, Özdal M, Algur ÖF et al. Isolation and identification of α-endosulfan degrading bacteria from insect microflora. TURJAF. 2016;4:248–254.
  • Rajagopal R. Beneficial interactions between insects and gut bacteria. Indian J Microbial. 2009;49:114–119.
  • Cetin G, Orman E, Polat Z. First record of the oriental chestnut gall wasp, Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae) in Turkey. Bitki Kor Bül. 2014;54:303–309.
  • Yan YZ, Liu YS, Jiang DA et al. Study on techniques for integrated control of Dryocosmus kuriphilus Yasumatsu in North Hubei. Plant Protect. 1995;1:5–8.
  • Altschul SF, Gısh W, Miller W et al. Basic local alignment search tool. J Mol Biol. 1990;215:403–410.
  • Tamura K, Stecher G, Peterson D et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–2729.
  • Peloquin JJ, Greenberg L. Identification of midgut bacteria from fourth instar red imported fire ant larvae, Solenopsis invicta buren (Hymenoptera: Formicidae). J Agr Urban Entomol. 2003;20:157–164.
  • Sreerag RS, Jayaprakas CA, Ragesh L et al. Endosymbiotic bacteria associated with the mealy bug, Rhizoecus amorphophalli (Hemiptera: Pseudococcidae). Int Sch Res Notices. 2014:8. Article ID 268491.
  • Miranda-Miranda E, Cossio-Bayugar R, Quezada-Delgado MR et al. Staphylococcus sapropiticus is a pathogen of the cattle tick Rhipicephalus (Boophilus) microplus. Biocontrol Sci Technol. 2010;20:1055–1067.
  • Miranda-Miranda E, Cossio-Bayugar R, Quezdada-Delgado MR et al. Staphylococcus saprophyticus causa infeccion letal en la garrapata del ganado Rhipicephalus microplus [ Staphylococcus saprophyticus causes lethal infection in the cattle tick Rhipicephalus microplus]. In: Entomologia mexicana. Sociedad Mexicana de Entomologia; 2009. p. 104–108. Spanish.
  • İlhan S, Nurbaş M, Kılıçarslan S et al. Removal of chromium, lead and copper ıons from ındustrial waste waters by Staphylococcus saprophyticus. Turk Electron J Biotechnol. 2004;2:50–57.
  • Bastos MCF, Coutinho BG, Coelho MLV. Lysostaphin: a stapylococcal bacteriolysin with potential clinical applications. Pharmaceuticals. 2010;3:1139–1161.
  • Hjelm E, Lundel-Etherden I. Slime production by Staphylococcus saprophyticus. Infect Immun. 1990;59:445–448.
  • Sperling VP. Activated sludge and aerobic biofilm reactors. London: IWA Publishing; 2007.
  • Fang Y, Lu Z, Fengxia LV et al. A newly ısolated organic solvent tolerant Staphylococcus saprophyticus M36 produced organic solvent-stable lipase. Curr Microbiol. 2006;53:510–515.
  • Arpigly JL, Gaeger KE. Bacterial lipolytic enzymes: classification and properties. Biochem J. 1999;343:177–183.
  • Hasan F, Ali Shah A, Hameed A. Industrial applications of microbial lipases. Enzyme Microb Technol. 2006;39:235–251.
  • Enright MR, Mclnerney JO, Griffin CT. Characterization of endospore-forming bacteria associated with entomopathogenic nematodes, Heterorhabditis spp., and description of Paenibacillus nematophilus sp. nov. Int J Syst Evol Microbiol. 2003;53:435–441.
  • Secil ES, Sevim A, Demirbag Z et al. Isolation, characterization and virulence of bacteria from Ostrinia nubilalis (Lepidoptera: Pyralidae). Biologia. 2012;67:767–776.
  • Sezen K, Isci S, Muratoglu H et al. Identification and pathogenicity of bacteria from Gryllotalpa gryllotalpa L. (Orthoptera: Gryllotalpidae). Türk Biyo Müc Derg. 2013;4:89–108.
  • Schoina C, Stringlis IA, Pantelides IS et al. Evaluation of application method and biocontrol efficacy of Paenibacillus alvei strain K165, against the cotton black root rot pathogen Thielaviopsis basicola. Biol Control. 2011;58:68–73.
  • Markakis EA, Tjamos SE, Antoniou PP et al. Biological control of Verticillium wilt of olive by Paenibacillus alvei, strain K165. BioControl. 2016;61:293–303.
  • Ryu CM, Kim J, Choi O et al. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control. 2006;39:282–289.
  • Kim YK, Choi EJ, Hong SJ et al. Biological control of tomato and red pepper powdery mildew using Paenibacillus polymyxa CW. Korean J Pestic Sci. 2013;17:379–387.
  • Lal S, Tabacchioni S. Ecology and biotechnological potential of Paenibacillus polymyxa: a mini review. Indian J Microbiol. 2009;49:2–10.
  • Devi KK, Kothamasi D. Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome c oxidase of the termite respiratory chain. FEMS Microbiol Lett. 2009;300:195–200.
  • Jang JY, Yang SY, Kim YC et al. Identification of orfamide Aasan insecticidal metabolite produced by Pseudomonas protegens F6. J Agric Food Chem. 2013;61:6786–6791.
  • Kupferschmied P, Maurhofer M, Keel C. Promise for plant pest control: root-associated pseudomonads with insecticidal activities. Front Plant Sci. 2013;4:1–17.
  • Khan KI, Jafri RH, Ahmad M. Discovery and pathogenicity of Pseudomonas fluorescens against various species of termites. Punjab Univ J Zool. 2008;23:047–057.
  • Sevim E, Celebi O, Sevim A. Determination of the bacterial flora as a microbial control agent of Toxoptera aurantii (Homoptera: Aphididae). Biologia. 2012;67:397–404.
  • Daval S, Lebreton L, Gazengel K et al. The biocontrol bacterium Pseudomonas fluorescens pf29Arp strain affects the pathogenesis related gene expression of the take all fungus Gaeumannomyces graminis var. Tiritici on wheat roots. Mol Plant Pathol. 2011;12:839–854.
  • Vallabhaneni SD. Biocontrol of Rhizoctonia solani in tobacco (Nicotiana tabacum) seed beds using Pseudomonas fluorescens. Agric Res. 2016;5:137.
  • Arseneault T, Goyer C, Filion M. Pseudomonas fluorescens LBUM223 increases potato yield and reduces common scab symptoms in the field. Phytopathology. 2015;105:1311–1317.
  • Goud M, Muralikrishnan V. Biological control of three phytopathogenic fungi by Pseudomonas fluorescens isolated from rhizosphere. Internet J Microbiol. 2008;7:6117 [ cited 2016 Oct 14]. Available from: http://ispub.com/IJMB/7/2/6117
  • Bruijn I, Knok MJD, Waard P et al. Massetolide A biosynthesis in Pseudomonas fluorescens. J Bacteriol. 2008:2777–2789.
  • Appanna V, Gazso L, Pierre M. Multiple metal tolerance in Pseudomonas fluorescens and its biotechnological significance. J Biotechnol. 1996;52:75–80.
  • Lemire J, Auger C, Bignucolo A et al. Metabolic strategies deployed by Pseudomonas fluorescens to combat metal pollutants: biotechnological prospects. In: Mendez-Vilas A, editor. Current research technology education topics in applied microbiology and microbial biotechnology. Formatex; 2010. p. 177–187.
  • Meyer JM, Abdallah MA. The fluorescent pigment of Pseudomonas fluorescenous: biosynthesis purification and physicochemical properties. J Gen Microbiol. 1978;107:319–328.
  • Boronin AM, Movrodi DV, Ksenzenko VN et al. Characterization of genes involved in phenazine biosynthesis in plant growth- promoting Pseudomonas fluorescens [Abstract]. 5th International Symposium on Pseudomonas; 1995 Jul 1; Tsukuba, Japan; 1995. p. 70 ( Molecular Biology and Biotechnology).