1,390
Views
3
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Microbial fuel cell as a free-radical scavenging tool

, &
Pages 511-515 | Received 14 Feb 2017, Accepted 06 Mar 2017, Published online: 21 Mar 2017

References

  • Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol. 2005;23(6):291–298.
  • Appleby J. From Sir William Grove to today: fuel cells and future. J Power Sources. 1990;29(1–2):3–11.
  • Pant D, Bogaert GV, Diels L, et al. A comparative assessment of bioelectrochemical systems and enzymatic fuel cells. In: Arora R, editor. Microbial biotechnology: energy and environment. Wallingford (CT): CAB International; 2012. p. 39–57.
  • He Z, Largus TA. Application of bacterial biocathodes in microbial fuel cells. Electroanalysis. 2006;18:2009–2015.
  • Huang L, Regan JM, Quan X. Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol. 2011;102:316–323.
  • Lovely DR. Bug Juice: harvesting electricity with microorganisms. Nat Rev Microbiol. 2006;4(7):497–508.
  • Mohan SV. Harnessing bioelectricity through microbial fuel cell from wastewater. Akshay Urja. 2012;5(5):25–29.
  • Mohan SV, Velvizhi G, Vamshi Krishna K, et al. Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications. Bioresour Technol. 2014;165:355–364.
  • Palmore GTR, Whitesides GM. Microbial and enzymatic biofuel cells. In: Himmel ME Baker JO Overend RP, editors. Enzymatic conversion of biomass for fuels production. Oxford: ACS Symposium; 2009. p. 271–290.
  • Pant D, Bogaert GV, Diels, L, et al. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol. 2010;101:1533–1543.
  • Rabaey K, Lissens G, Verstraete W. Microbial fuel cells: performance and perspectives. In: Lens P Westermann P Haberbauer M Moreno A, editors. Biofuels for fuel cells: renewable energy from biomass fermentation. London: IWA Publishing; 2005. p. 377–399.
  • Wanga Y, Niua C-G, Zenga G-M, et al. Microbial fuel cell using ferrous ion activated persulfate as a cathodic reactant. Int J Hydrog Energy. 2011;36(23):15344–15351.
  • Yuan Y, Chen Q, Zhou S, et al. Bioelectricity generation and microcystins removal in a blue-green algae powered microbial fuel cell. J Hazard Mater. 2011;187(1–3):591–595.
  • Das S, Mangwami N. Recent developments in microbial fuel cells: a review. J Sci Ind Res. 2010;69:727–731.
  • Mohan SV, Velvizhi G, Modestra JA, et al. Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sustainable Energy Rev. 2014;40:779–797.
  • Pant D, ElMekawy A, Srikanth S, et al. Food and agricultural wastes as substrates for bioelectrochemical system (BES): the synchronized recovery of sustainable energy and waste treatment. Food Res Int. 2015;73:213–225.
  • Pant D, Singh A, Bogaert GV, et al. Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv. 2012;2:1248–1263.
  • Logan BE, Hamelers B, Rozendal R, et al. Microbial fuel cells – methodology and technology. Environ Sci Technol. 2006;40(17):5181–5192.
  • Logan BE, Regan JM. Microbial fuel cells – challenges and applications. Environ Sci Technol. 2006;40(17):5172–5180.
  • Wang H, Ren ZJ. A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnol Adv. 2013;31:1769–1807.
  • Heijne AT, Liu F, van der Weijden R, et al. Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol. 2010;44(11):4376–4381.
  • Mu Y, Rabaey K, Rozendal RA, et al. Decolorization of azo dyes in bioelectrochemical systems. Environ Sci Technol. 2009;43(13):5137–5143.
  • Du H, Li F, Yu Z, et al. Nitrification and denitrification in two-chamber microbial fuel cells for treatment of wastewater containing high concentrations of ammonia nitrogen. J Environ Technol. 2016;37(10):1232–1239.
  • Lovley DR. Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep. 2011;3(1):27–35.
  • Valko M, Jomova K, Rhodes CJ, et al. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol. 2016;90(1):1–37.
  • Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT. 1995;28:25–30.
  • Pogliani L. Pseudo-zero-order reactions. React Kinet Catal Lett. 2008;93(2):187–191
  • Carocho M, Ferreira ICFR. A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem Toxicol. 2013;51:15–25.
  • Mohanakrishna G, Srikanth S, Pant D. Bioelectrochemical Systems (BES) for microbial electroremediation: an advanced wastewater treatment technology. In: Kaushik G, editor. Applied environmental biotechnology: present scenario and future trends. New Delhi: Springer India; 2015. p. 145–167.
  • Bondet V, Brand-Williams W, Berset C. Kinetics and mechanisms of antioxidant activity using the DPPH free radical method. LWT. 1997;30:609–615.
  • Mortensen A, Skibsted LH, Sampson J, et al. Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants. FEBS Lett. 1997;418(1–2):91–97.
  • Otohinoyi DA, Ekpo O, Ibraheem O. Effect of ambient temperature storage on 2,2-diphenyl-1-picrylhydrazyl (DPPH) as a free radical for the evaluation of antioxidant activity. Int J Biol Chem Sci. 2014;8(3):1262–1268.
  • Carr A, Frei B. Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J. 1999;13:(9)1007–1024.
  • Herbert V. Prooxidant effects of antioxidant vitamins. Introduction. J Nutr. 1996;126(4):1197S–1200S.