5,057
Views
7
CrossRef citations to date
0
Altmetric
Article; Pharmaceutical Biotechnology

Optimization of expression and purification of recombinant S1 domain of the porcine epidemic diarrhea virus spike (PEDV- S1) protein in Escherichia coli

&
Pages 619-629 | Received 25 Aug 2016, Accepted 15 Mar 2017, Published online: 24 Mar 2017

References

  • Debouck P, Pensaert M. Experimental infection of pigs with a new porcine enteric coronavirus, CV 777. Am J Vet Res. 1980;41(2):219–223.
  • Pijpers A, van Nieuwstadt AP, Terpstra C, et al. Porcine epidemic diarrhoea virus as a cause of persistent diarrhoea in a herd of breeding and finishing pigs. Vet Rec. 1993;132(6):129–131.
  • Pensaert M, De Bouck P, A new coronavirus-like particle associated with diarrhea in swine. Arch Virol. 1978;58(3):243–247.
  • Chen J-F, Sun D-B, Wang C-B, et al. Molecular characterization and phylogenetic analysis of membrane protein genes of porcine epidemic diarrhea virus isolates in China. Virus Genes. 2008;36(2):355–364.
  • Li W, Li H, Liu Y, et al. New variants of porcine epidemic diarrhea virus, China, 2011. Emerg Infect Dis. 2012;18(8):1350.
  • Puranaveja S, Poolperm P, Lertwatcharasarakul P, et al. Chinese-like strain of porcine epidemic diarrhea virus, Thailand. Emerg Infect Dis. 2009;15(7):1112.
  • Mole B. Deadly pig virus slips through US borders. Nature. 2013;499(7459): 388–389.
  • Stevenson GW, Hoang H, Schwartz KJ, et al. Emergence of porcine epidemic diarrhea virus in the United States: clinical signs, lesions, and viral genomic sequences. J Vet Diagn Invest. 2013; 25 (5): 649–654.
  • Lin CN, Chung W-B, Chang S-W, et al. US-like strain of porcine epidemic diarrhea virus outbreaks in Taiwan, 2013-2014. J Vet Med Sci. 2014;76(9):1297–1299.
  • Lin C-N, et al. US-like strain of porcine epidemic diarrhea virus outbreaks in Taiwan, 2013.
  • Kocherhans R, Bridgen A, Ackermann M, et al. Completion of the porcine epidemic diarrhoea coronavirus (PEDV) genome sequence. Virus Genes. 2001;23(2):137–144.
  • Duarte M, Tobler K, Bridgen A, et al. Sequence analysis of the porcine epidemic diarrhea virus genome between the nucleocapsid and spike protein genes reveals a polymorphic ORF. Virology. 1994;198(2):466–476.
  • Lee S, Lee C, Outbreak-related porcine epidemic diarrhea virus strains similar to US strains, South Korea, 2013. Emerg Infect Dis. 2014;20(7): 1223–1226.
  • Duarte M, Laude H, Sequence of the spike protein of the porcine epidemic diarrhoea virus. J Gen Virol. 1994;75(Pt 5):1195–1200.
  • Jackwood MW, Hilt DA, Callison SA, et al. Spike glycoprotein cleavage recognition site analysis of infectious bronchitis virus. Avian Dis. 2001;45(2):366–372.
  • Lee DK, Park C-K, Kim S-H, et al. Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses isolated in Korea. Virus Res. 2010;149(2):175–182.
  • Sturman LS, Holmes KV, Proteolytic cleavage of peplomeric glycoprotein E2 of MHV yields two 90 K subunits and activates cell fusion. In: Molecular biology and pathogenesis of coronaviruses.Springer; 1984. p. 25–35.
  • Bosch BJ, van der Zee R, de Haan CAM, et al. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003;77(16):8801–8811.
  • Chang SH, Bae JL, Kang TJ, et al. Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus. Mol Cells. 2002;14(2):295–299.
  • Lee D-K, Cha S-Y, Lee C. The N-terminal region of the porcine epidemic diarrhea virus spike protein is important for the receptor binding. Korean J Microbiol Biotechnol. 2011;39(1):40–50.
  • Sun DB, Feng L, Shi HY, et al. Spike protein region (aa 636789) of porcine epidemic diarrhea virus is essential for induction of neutralizing antibodies. Acta Virol. 2007;51(3):149–156.
  • Chen Y, Shi Y, Deng H, et al. Characterization of the porcine epidemic diarrhea virus codon usage bias. Infect Genet Evol. 2014;28:95–100.
  • Lee DK, Park CK, Kim SH, et al. Heterogeneity in spike protein genes of porcine epidemic diarrhea viruses isolated in Korea. Virus Res. 2010;149(2):175–182.
  • Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. In: Recombinant protein expression in microbial systems. 2014. p.7.
  • Pines O, Inouye M, Expression and secretion of proteins in E. coli. Mol Biotechnol. 1999;12(1):25–34.
  • Lebendiker M, Danieli T, Production of prone‐to‐aggregate proteins. FEBS Lett. 2014;588(2):236–246.
  • Malik A, Rudolph R, Söhling B, A novel fusion protein system for the production of native human pepsinogen in the bacterial periplasm. Protein Expr Purif. 2006;47(2):662–671.
  • Malik A, Jenzsch M, Lübbert A, et al. Periplasmic production of native human proinsulin as a fusion to E. coli ecotin. Protein Expr Purif. 2007;55(1):100–111.
  • Elrobh MS, Alanazi MS, Khan W, et al. Molecular cloning and characterization of cDNA encoding a putative stress-induced heat-shock protein from Camelus dromedarius. Int J Mol Sci. 2011;12(7):4214–4236.
  • Swords WE. Chemical transformation of E. coli. E. coli plasmid vectors. In: Methods and applications. 2003. p. 49–53.
  • Sambrook J, Russell DW. The inoue method for preparation and transformation of competent E. coli:" ultra competent" cells. CSH Protoc. 2006;2006(1).
  • Studier FW, Rosenberg AH, Dunn JJ, et al. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89.
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685.
  • De Mey M, Lequeux GJ, Maertens J, et al. Comparison of protein quantification and extraction methods suitable for E. coli cultures. Biologicals. 2008;36(3):198–202.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–254.
  • Tunón P, Johansson K-E. Yet another improved silver staining method for the detection of proteins in polyacrylamide gels. J Biochem Biophys Methods. 1984;9(2):171–179.
  • Lin‐Chao S, Chen WT, Wong TT. High copy number of the pUC plasmid results from a Rom/Rop‐suppressible point mutation in RNA II. Mol Microbiol. 1992;6(22):3385–3393.
  • Makrides SC. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev. 1996;60(3):512–538.
  • Sørensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol. 2005;115(2):113–128.
  • Farewell A, Neidhardt FC. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J Bacteriol. 1998;180(17):4704–4710.
  • Herendeen SL, Vanbogelen RA, Neidhardt FC. Levels of major proteins of Escherichia coli during growth at different temperatures. J Bacteriol. 1979;139(1):185–194.
  • Donovan RS, Robinson CW, Glick B. Review: optimizing inducer and culture conditions for expression of foreign proteins under the control of thelac promoter. J Ind Microbiol. 1996;16(3):145–154.
  • Kong B, Guo GL. Soluble expression of disulfide bond containing proteins FGF15 and FGF19 in the cytoplasm of Escherichia coli. PLoS One. 2014;9(1):e85890.
  • Rudolph R, Lilie H, In vitro folding of inclusion body proteins. FASEB J. 1996;10(1):49–56.
  • Gopal GJ, Kumar A. Strategies for the production of recombinant protein in Escherichia coli. Protein J. 2013;32(6):419–425.
  • Klint JK, Senff S, Saez NJ, et al. Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PLoS One. 2013;8(5):e63865.
  • Broedel S, Papciak SM, Jones WR. The selection of optimum media formulations for improved expression of recombinant proteins in E. coli. Athena Enzyme Systems Technical Bulletin, 2001; 2.
  • Sahdev S, Khattar SK, Saini KS. Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem. 2007;307(1–2): 249–264.
  • Lee SY, High cell-density culture of Escherichia coli. Trends Biotechnol. 1996;14(3):98–105.
  • Rispoli FJ, Shah V. Mixture design as a first step for optimization of fermentation medium for cutinase production from Colletotrichum lindemuthianum. J Ind Microbiol Biotechnol. 2007;34(5):349–355.
  • Neubauer P, Hofmann K, Holst O, et al. Maximizing the expression of a recombinant gene in Escherichia coli by manipulation of induction time using lactose as inducer. Appl Microbiol Biotechnol. 1992;36(6):739–744.
  • Tamerler CY, Önsan Zİ, Kirdar B. Optimization of starting time and period of induction and inducer concentration in the production of the restriction enzyme EcoRI from recombinant Escherichia coli 294. Turk J Chem. 1998;22(3):221–226.
  • Hartinger D, Heinl S, Schwartz HE, et al. Enhancement of solubility in Escherichia coli and purification of an aminotransferase from Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B 1. Microbial Cell Fact. 2010;9(1):1.
  • Maldonado LMP, Hernández VE, Rivero EM, et al. Optimization of culture conditions for a synthetic gene expression in Escherichia coli using response surface methodology: the case of human interferon beta. Biomol Eng. 2007;24(2):217–222.
  • Wong HH, Kim YC, Lee SY, et al. Effect of post‐induction nutrient feeding strategies on the production of bioadhesive protein in Escherichia coli. Biotechnol Bioeng. 1998;60(3):271–276.
  • Palomares LA, Estrada-Moncada S, Ramírez OT. Production of recombinant proteins. In: Recombinant gene expression: reviews and protocols; 2004. p. 15–51.
  • Choi JH, Keum KC, Lee SY. Production of recombinant proteins by high cell density culture of Escherichia coli. Chem Eng Sci. 2006;61(3):876–885.
  • Crowe J, Döbeli H, Gentz R, et al. 6xffis-Ni-NTA chromatography as a superior technique in recombinant protein expression/purification. In: Protocols for gene analysis. 1994. p. 371–387.