1,856
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of a gene regulating antibiotic production in Bacillus subtilis BSD-2

, , , , , , & show all
Pages 332-338 | Received 15 Feb 2017, Accepted 09 May 2017, Published online: 16 May 2017

References

  • Inaoka T, Ochi K. Scandium stimulates the production of amylase and bacilysin in Bacillus subtilis. Appl Environ Microb. 2011;77:8181–8183.
  • Wei YH, Wang LC, Chen WC. Production and characterization of fengycin by indigenous Bacillus subtilis F29-3 originating from apotatofarm. Int J Mol Sci. 2010;11:4526–4538.
  • Yin JF, Zhang WH, Li JQ, et al. Pepper blight of bio-control bacteria screening and its antibacterial mechanism. Acta Phytopathol Sinica. 2007;37(1):88–94.
  • Chen XL, Wang GH, Jin J, et al. Biocontrol effect of Paenibacillus polymyxa BRF-1 and Bacillus subtilis BRF-2 on fusarium wilt disease of cucumber and tomato. Chin J Eco-Agric. 2008;16:446–450.
  • Hu RP, Zhang D, Zhang LP, et al. Purification and identification of an antimicrobial peptides from Bacillus subtilis BSD-2. Acta Agric Boreali-Sinica. 2011;6:201–206.
  • Petit MA. Tn10-derived transposons active in Bacillus subtilis. J Bacterioal. 1990;172:6736–6740.
  • Yazgan A, Ozeengiz G, Marahiel MA. Tn10 insertional mutations of Bacillus subtilis that block the biosynthesis of basilysin. Biochim Biophys Acta. 2001;1518:87–94.
  • Sanchez A, Olmos J. Bacillus subtilis transcriptional regulators interaetion. Biotechnol Lett. 2004;26:403–407.
  • Chang, Stanley NC. High frequency transforation of Bacillus subtilis protoplasts by plasmid NA. Mol Genet Genomics. 1979;168:111–115.
  • Tsuge K, Ano T, Hirai M, et al. The genes degQ, pps, and lpa-8(sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob Agents Chemothe. r. 1999;43:2183–2192.
  • Li RF, Xue WW, Huang L, et al. Competent preparation and plasmid transformation of Bacillus subtilis. Biotechnol Bull. 2011;5:227–230.
  • Gao J, Li YB, Ke XW, et al. Development of gengtic transformation system of Valsa mali of apple mediated by PEG. Acta Microbiol Sinica. 2011;9:1194–1199.
  • Xu MQ, Jiang J, Sun MH, et al. Construction of Clonostachys rosea 67-1 genetic transformation system by restriction enzyme-mediated integration (REMI). Chin J Biol Control. 2013;2:263–269.
  • Guo QG, Li SZ, Lu XY, et al. Mapping and cloning function genes from antagonistic bacterium NCD-2 against Verticillium dahliae. Acta Agric Boreali-Sinica. 2007;22:190–194.
  • Krolu TE, Kurt-Gür G, Unlü EC, et al. The novel gene yvfI in Bacillus subtilis is essential for bacilysin biosynthesis. Antonie Van Leeuwenhoek. 2008;94(3):471–479.
  • Bender J, Kleckner N. IS10 transposase mutations that specifically alter target site recognition. Embo J. 1992;11:741–750.
  • Halling SM, Kleckner N. Asymmetrical six-base-pair target site sequence determines Tn10 insertion specificity. Cell. 1982;28:155–163.
  • Gao WH, Hao JA, Xia SY, et al. Using mini-Tn10 transposon system to research the genes involved in biofilmformation in Bacillus. Microbiol China. 2009;36:345–349.
  • Dai S. Isolation and regulation mechanisms study of the antibiotics in B. amyloliquefaciens [master's thesis]. Tianjin: NanKai University; 2011.
  • Tsuge K, Yuichiro O, Makoto S. Gene yerP, involved in surfactin self-resistance in Bacillus subtilis. Antimicrob Agents Chemother. 2001;45:3566–3573.
  • Yoshida K, Yamaguchi H, Kinehara M, et al. Identification of additional TnrA-regulated genes of Bacillus subtilis associated with a TnrA box. Mol Microbiol. 2003;49:157–165.
  • Zhang Y. Transcriptome analysis of Bacillus subtilis responding to valine, glutamate and glutamine [master's thesis]. Shanghai: East China University of Science and Technology; 2010.