1,302
Views
1
CrossRef citations to date
0
Altmetric
Article; Pharmaceutical Biotechnology

Improvement of superoxide dismutase activity using experimental design and radical promoters

&
Pages 1046-1054 | Received 26 Dec 2016, Accepted 06 Jul 2017, Published online: 21 Jul 2017

References

  • El Shafey HM, Bahashwan SA, Alghaithy AA, et al. Microbial superoxide dismutase enzyme as therapeutic agent and future gene therapy. In: Mendez-Vilas A, editor. Current research, technology and education topics in applied microbiology and microbial biotechnology. Vol. 1. Badajoz: Formatex Research Center; 2010. p. 435–443.
  • Riedl CR, Sternig P, Galle G, et al. Liposomal recombinant human superoxide dismutase for the treatment of Peyronie's disease: a randomized placebo-controlled double-blind prospective clinical study. Eur Urol. 2005;48:656–661.
  • Dellomonaco C, Amaretti A, Zanoni S, et al. Fermentative production of superoxide dismutase with Kluyveromyces marxianus. J Ind Microbiol Biotechnol. 2006;34:27–34.
  • Orozco MR, Hernández-Saavedra NY, Valle FA, et al. Cell yield and superoxide dismutase activity of the marine yeast Debaryomyces hansenii under different culture conditions. J Mar Biotechnol. 1998;6:255–259.
  • Anbu P, Gopinath SCB, Cihan AC, et al. Microbial enzymes and their applications in industries and medicine. BioMed Res Int. 2013;2013:204014.
  • Brioukhanov A, Netrusov A. Catalase and superoxide dismutase: distribution, properties, and physiological role in cells of strict anaerobes. Biochemistry (Moscow). 2004;69:949–962.
  • Garcı́a-González A, Ochoa JL. Anti-inflammatory activity of Debaryomyces hansenii Cu, Zn-SOD. Arch Med Res. 1999;30:69–73.
  • Abe F, Miura T, Nagahama T, et al. Isolation of a highly copper-tolerant yeast, Cryptococcus sp., from the Japan Trench and the induction of superoxide dismutase activity by Cu2+. Biotechnol Lett. 2001;23:2027–2034.
  • Krumova E, Dolashka-Angelova P, Pashova S, et al. Improved production by fed-batch cultivation and some properties of Cu/Zn-superoxide dismutase from the fungal strain Humicola lutea 103. Enzyme Microb Technol. 2007;40:524–532.
  • Koleva DI, Petrova VY, Kujumdzieva AV. Comparison of enzymatic antioxidant defence systems in different metabolic types of yeasts. Can J Microbiol. 2008;54:957–963.
  • Abrashev R, Feller G, Kostadinova N, et al. Production, purification, and characterization of a novel cold-active superoxide dismutase from the Antarctic strain Aspergillus glaucus 363. Fungal Biol. 2016;120:679–689.
  • Bhosale PB, Gadre RV. Production of β-carotene by a mutant of Rhodotorula glutinis. Appl Microbiol Biotechnol. 2001;55:423–427.
  • Sakaki H, Nakanishi T, Tada A, et al. Activation of torularhodin production by Rhodotorula glutinis using weak white light irradiation. J Biosci Bioeng. 2001;92:294–297.
  • Sakaki H, Nochide H, Komemushi S, et al. Effect of active oxygen species on the productivity of torularhodin by Rhodotorula glutinis No. 21. J Biosci Bioeng. 2002;93:338–340.
  • Aksu Z, Eren AT. Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochem Eng J. 2007;35:107–113.
  • Malisorn C, Suntornsuk W. Optimization of β-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Bioresour Technol. 2008;99:2281–2287.
  • Cutzu R, Coi A, Rosso F, et al. From crude glycerol to carotenoids by using a Rhodotorula glutinis mutant. World J Microbiol Biotechnol. 2013;29:1009–1017.
  • Kot AM, Blazejak S, Kurcz A, et al. Rhodotorula glutinis-potential source of lipids, carotenoids, and enzymes for use in industries. Appl Microbiol Biotechnol. 2016;100:6103–6117.
  • Yun S, Lee SO, Lee TH. Purification and characterization of superoxide dismutase from Rhodotorula glutinis K-24. Korean J Microbiol. 1993;31:573–578.
  • Wang S-L, Chen G-T, Qi G-H, et al. Formulation of culture medium for superoxide dismutase production by Rhodotorula glutinis RY-06 strain with high yield of beta-carotene. In: Zhou H, editor. Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering; 2008 May 16–18; Shanghai, China. Piscataway: (NJ): IEEE; 2008. p. 959–961.
  • Ünlü AE, Takaç S. Investigation of the simultaneous production of superoxide dismutase and catalase enzymes from Rhodotorula glutinis under different culture conditions. Artif Cells Blood Subst Biotechnol. 2012;40:338–344.
  • Biryukova E, Medentsev A, Arinbasarova AY, et al. Tolerance of the yeast Yarrowia lipolytica to oxidative stress. Microbiology. 2006;75:243–247.
  • Kreiner M, Harvey LM, McNeil B. Oxidative stress response of a recombinant Aspergillus niger to exogenous menadione and H2O2 addition. Enzyme Microb Technol. 2002;30:346–353.
  • Ma T, Chen T, Li P, et al. Heme oxygenase-1 (HO-1) protects human lens epithelial cells (SRA01/04) against hydrogen peroxide (H2O2)-induced oxidative stress and apoptosis. Exp Eye Res. 2016;146:318–329.
  • Fiocchetti M, Cipolletti M, Leone S, et al. Neuroglobin in breast cancer cells: effect of hypoxia and oxidative stress on protein level, localization, and anti-apoptotic function. PLoS One. 2016;11:e0154959.
  • Shimada E, Ogawa T, Tsutsui K, et al. Methyl viologen induces neural differentiation on murine P19 cells. In Vitro Cell Dev Biol Anim. 2016;52:466–472.
  • Rodriguez-Ruiz V, Barzegari A, Zuluaga M, et al. Potential of aqueous extract of saffron (Crocus sativus L.) in blocking the oxidative stress by modulation of signal transduction in human vascular endothelial cells. J Funct Foods. 2016;26:123–134.
  • Cervini-Silva J, Nieto-Camacho A, Gomez-Vidales V, et al. Oxidative stress induced by arsenopyrite and the role of desferrioxamine-B as radical scavenger. Chemosphere. 2013;90:1779–1784.
  • Kim G-N, Lee Y-J, Song J-H, et al. Curcumin ameliorates AAPH-induced oxidative stress in HepG2 cells by activating Nrf2. Food Sci Biotechnol. 2013;22:241–247.
  • Kalil S, Maugeri F, Rodrigues M. Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochem. 2000;35:539–550.
  • Choudhari S, Singhal R. Media optimization for the production of β-carotene by Blakeslea trispora: a statistical approach. Bioresour Technol. 2008;99:722–730.
  • Singh RS, Singh RP, Kennedy JF. Endoinulinase production by a new endoinulinase producer Aspergillus tritici BGPUP6 using a low cost substrate. Int J Biol Macromol. 2016;92:1113–1122.
  • Zahedi F, Shahbazmohammadi H. Medium optimization of a dihydrolipohyl dehydrogenase with diaphorase activity from Bacillus spharicus. In: Mendez-Vilas A, editor. Microbes in the spotlight: recent progress in the understanding of beneficial and harmful microorganisms. Boca Raton (FL): Brown Walker Press; 2016. p. 406.
  • Moein S, Mahdizadeh R, Shahbazmohammadi H. Application of response surface methodology to optimize purification of recombinant oxidoreductases. In: Mendez-Vilas A, editor. Microbes in the spotlight: recent progress in the understanding of beneficial and harmful microorganisms. Boca Raton (FL): Brown Walker Press; 2016. p. 385.
  • Dias FFG, Ruiz ALTG, Della Torre A, et al. Purification, characterization and anti-proliferative activity of L-asparaginase from Aspergillus oryzae CCT 3940 whit no glutaminase activity. Asian Pac J Trop Biomed. 2016;6:785–794.
  • Mahendranath G, Shaik Akbar B, Jamuna JB, et al. Soy whey based medium for optimized phytase activity in Saccharomyces cerevisiae MTCC 5421 and α-D-galactosidase and antibacterial activities in Lactobacillus plantarum MTCC 5422 by response surface methodology. J Sci Food Agri. 2015;95:991–999.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469–474.
  • Abrashev R, Engibarov S, Eneva R, et al. Superoxide dismutase and catalase activities in Vibrio cholerae non-O1 strains. Biotechnol Biotechnol Equip. 2009;23:473–476.
  • Zhang Z, Zhang X, Tan T. Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresour Technol. 2014;157:149–153.
  • Pasanphan W, Buettner GR, Chirachanchai S. Chitosan gallate as a novel potential polysaccharide antioxidant: an EPR study. Carbohydr Res. 2010;345:132–140.
  • Pan JG, Kwak MY, Rhee JS. High density cell culture of Rhodotorula glutinis using oxygen-enriched air. Biotechnol Lett. 1986;8:715–718.
  • Yen HW, Zhang Z. Effects of dissolved oxygen level on cell growth and total lipid accumulation in the cultivation of Rhodotorula glutinis. J Biosci Bioeng. 2011;112:71–74.
  • Kreiner M, McNeil B, Harvey LM. “Oxidative stress” response in submerged cultures of a recombinant Aspergillus niger (B1‐D). Biotechnol Bioeng. 2000;70:662–669.
  • Pinheiro R, Belo I, Mota M. Oxidative stress response of Kluyveromyces marxianus to hydrogen peroxide, paraquat and pressure. Appl Microbiol Biotechnol. 2002;58:842–847.