1,196
Views
11
CrossRef citations to date
0
Altmetric
Article; Food Biotechnology

Molecular and biochemical characterization of a novel cold-active and metal ion-tolerant GH10 xylanase from frozen soil

, , , , , , , ORCID Icon, , , & show all
Pages 955-963 | Received 29 Dec 2016, Accepted 21 Jul 2017, Published online: 14 Aug 2017

References

  • Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev. 2005;29(1):3–23.
  • Bastawde KB. Xylan structure, microbial xylanases, and their mode of action. World J Microbiol Biotechnol. 1992;8:353–368.
  • Finn RD, Bateman A, Clements J, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42(Database issue):D222–D230.
  • Khandeparker R, Numan MT. Bifunctional xylanases and their potential use in biotechnology. J Ind Microbiol Biotechnol. 2008;35(7):635–644.
  • Georlette D, Bentahir M, Claverie P, et al. Cold adapted enzymes. Trends Biotechnol. 2001;15(9):177–196.
  • Sarmiento F, Peralta R, Blamey JM. Cold and hot extremozymes: industrial relevance and current trends. Front Bioeng Biotechnol. 2015;3:148.
  • Guo B, Li PY, Yue YS, et al. Gene cloning, expression and characterization of a novel xylanase from the marine bacterium, Glaciecola mesophila KMM241. Mar Drugs. 2013;11(4):1173–1187.
  • Lee CC, Smith M, Kibblewhite-Accinelli RE, et al. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr Microbiol. 2006;52(2):112–116.
  • Zhou J. Molecular and biochemical characterization of a novel intracellular low-temperature-active xylanase. J Microbiol Biotechnol. 2012;22(4):501–509.
  • Zhou J, Huang H, Meng K, et al. Molecular and biochemical characterization of a novel xylanase from the symbiotic Sphingobacterium sp. TN19. Appl Microbiol Biotechnol. 2009;85(2):323–333.
  • Hou YH, Wang TH, Long H, et al. Novel cold-adaptive Penicillium strain FS010 secreting thermo-labile xylanase isolated from Yellow Sea. Acta Biochim Biophys Sin. 2006;38(2):142–149.
  • Wang G, Luo H, Wang Y, et al. A novel cold-active xylanase gene from the environmental DNA of goat rumen contents: direct cloning, expression and enzyme characterization. Bioresour Technol. 2011;102(3):3330–3306.
  • Petrescu I, Lamottebrasseur J, Chessa JP, et al. Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles. 2000;4(3):137–144.
  • Guo B, Chen XL, Sun CY, et al. Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-beta-1, 4-xylanase from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol. 2009;84(6):1107–1115.
  • Zhang MH, Li ZY, Qiu HY, et al. Cloning and characterization of a novel cold-active bifunctional xylosidase/arabinfuranosidease AX543. Biotechnol Bull. 2016;32(11):215–223.
  • Brady SF. Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nat Protoc. 2007;2(5):1297–1305.
  • Wang G, Meng K, Luo H, et al. Phylogenetic diversity and environment-specific distributions of glycosyl hydrolase family 10 xylanases in geographically distant soils. PLoS One. 2012;7(8):e43480.
  • Li Z, Xue X, Zhao H, et al. A C-terminal proline-rich sequence simultaneously broadens the optimal temperature and pH ranges and improves the catalytic efficiency of glycosyl hydrolase family 10 ruminal xylanases. Appl Environ Microbiol. 2014;80(11):3426–3432.
  • Teng C, Jia H, Yan Q, et al. High-level expression of extracellular secretion of a beta-xylosidase gene from Paecilomyces thermophila in Escherichia coli. Bioresour Technol. 2011;102(2):1822–1830.
  • Tseng MJ, Yap MN, Ratanakhanokchai K, et al. Purification and characterization of two cellulase free xylanases from an alkaliphilic Bacillus firmus. Enzyme Microb Technol. 2002;30(5):590–595.
  • Berrin JG, Juge N. Factors affecting xylanase functionality in the degradation of arabinoxylans. Biotechnol Lett. 2008;30(7):1139–1150.
  • Goncalves AM. Pichia pastoris: a recombinant microfactory for antibodies and human membrane proteins. J Microbiol Biotechnol. 2013;23(5):587–601.
  • Woodward AM, Senchyna M, Williams R, et al. Characterization of the interaction between hydroxypropyl guar galactomannan and galectin-3. Biochem Biophys Res Commun. 2012;424(1):12–17.
  • Spiwok V, Lipovová P, Skálová T, et al. Cold-active enzymes studied by comparative molecular dynamics simulation. J Mol Model. 2007;13(4):485–497.
  • Zhou J, Dong Y, Tang X, et al. Molecular and biochemical characterization of a novel intracellular low-temperature-active xylanase. J Microbiol Biotechnol. 2012;22(4):501–509.
  • Wang SY, Hu W, Lin XY, et al. A novel cold-active xylanase from the cellulolytic myxobacterium Sorangium cellulosum So9733-1: gene cloning, expression, and enzymatic characterization. Appl Microbiol Biotechnol. 2011;93(4):1503–1512.
  • Gallardo Ó, Javier Pastor FI, Polaina J, et al. Structural insights into the specificity of Xyn10B from Paenibacillus barcinonensis and its improved stability by forced protein evolution. J Biol Chem. 2010;285(4):2721–2733.
  • Du Y, Shi P, Huang H, et al. Characterization of three novel thermophilic xylanases from Humicola insolens Y1 with application potentials in the brewing industry. Bioresour Technol. 2013;130:161–167.
  • Zhao L, Meng K, Shi P, et al. A novel thermophilic xylanase from Achaetomium sp. Xz–8 with high catalytic efficiency and application potentials in the brewing and other industries. Process Biochem. 2013;48(12):1879–1885.
  • Ihsanawati, Kumasaka T, Kaneko T, et al. Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8. Proteins. 2005;61(4):999–1009.
  • Wang GZ, Wang YR, Yang PL, et al. Molecular detection and diversity of xylanase genes in alpine tundra soil. Appl Microbiol Biotechnol. 2009;87:1383–1393.
  • Liu XS, Huang ZQ, Zhang XN, et al. Cloning, expression and characterization of a novel cold-active and halophilic xylanase from Zunongwangia profunda. Extremophiles. 2014;18:441–450.