1,218
Views
7
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

Functional identification of an EXPA gene (NcEXPA8) isolated from the tree Neolamarckia cadamba

, , , , , , , & show all
Pages 1116-1125 | Received 07 Feb 2017, Accepted 31 Jul 2017, Published online: 13 Sep 2017

References

  • Perini MA, Sin IN, Martinez GA, et al. Measurement of expansin activity and plant cell wall creep by using a commercial texture analyzer. Electron J Biotechnol. 2017;26:12–19.
  • Cosgrove DJ, Li LC, Cho HT, et al. The growing world of expansins. Plant Cell Physiol. 2002;43(12):1436–1444.
  • Cosgrove DJ. Loosening of plant cell walls by expansins. Nature. 2000;407(6802):321–326.
  • Cosgrove DJ. Catalysts of plant cell wall loosening. F1000Res. 2016;5(F1000 Faculty Rev):119.
  • Marowa P, Ding A, Kong Y. Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Rep. 2016;35(5):949–965.
  • Guimaraes LA, Mota APZ, Araujo ACG, et al. Genome-wide analysis of expansin superfamily in wild Arachis discloses a stress-responsive expansin-like B gene. Plant Mol Biol. 2017;94(1–2):79–96.
  • McQueen-Mason S, Durachko DM, Cosgrove DJ. Two endogenous proteins that induce cell wall extension in plants. Plant Cell. 1992;4(11):1425–1433.
  • Rose JK, Bennett AB. Cooperative disassembly of the cellulose–xyloglucan network of plant cell walls: parallels between cell expansion and fruit ripening. Trends Plant Sci. 1999;4(5):176–183.
  • Li Z-C, Durachko DM, Cosgrove DJ. An oat coleoptile wall protein that induces wall extension in vitro and that is antigenically related to a similar protein from cucumber hypocotyls. Planta. 1993;191(3):349–356.
  • Cosgrove DJ, Zhang T, Vavylonis D, et al. Nanoscale movements of cellulose microfibrils in primary cell walls. Nat Plants. 2017;3:17056.
  • Wang Y, Ma N, Qiu S, et al. Regulation of the α-expansin gene OsEXPA8 expression affects root system architecture in transgenic rice plants. Mol Breed. 2014;34(1):47–57.
  • Ma N, Wang Y, Qiu S, et al. Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension. PLoS One. 2013;8(10):e75997.
  • Cho HT, Kende H. Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell. 1997;9(9):1661–1671.
  • Xu, Q, Krishnan S, Merewitz E, et al. Gibberellin-regulation and genetic variations in leaf elongation for tall fescue in association with differential gene expression controlling cell expansion. Sci Rep. 2016;6:30258.
  • Choi D. Regulation of expansin gene expression affects growth and development in transgenic rice plants. Plant Cell. 2003;15(6):1386–1398.
  • Gray-Mitsumune M. Expansins abundant in secondary xylem belong to subgroup A of the alpha-expansin gene family. Plant Physiol. 2004;135(3):1552–1564.
  • Gray-Mitsumune M, Blomquist K, McQueen-Mason S, et al. Ectopic expression of a wood-abundant expansin PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen. Plant Biotechnol J. 2008;6(1):62–72.
  • Jung J, O Donoghue EM, Dijkwel PP, et al. Expression of multiple expansin genes is associated with cell expansion in potato organs. Plant Sci. 2010;179(1–2):77–85.
  • Yan A, Wu M, Yan L, et al. AtEXP2 is involved in seed germination and abiotic stress response in Arabidopsis. Plos One. 2014;9:e85208.
  • Li D, Huang X, Liu Z, et al. Effect of AtR8 lncRNA partial deletion on Arabidopsis seed germination. Mol Soil Biol. 2016;7(7):1–7.
  • Budzinski IGF, Santos TB, Sera T, et al. Expression patterns of three α-expansin isoforms in Coffea arabica during fruit development. Plant Biol. 2011;13(3):462–471.
  • Zhang T, Li Y, Zhou Y, et al. Cloning and expression analysis of a homologous expansin gene EXP2 in Picea wilsonii. J For Res. 2016;27(2):247–255.
  • Geilfus C, Ober D, Eichacker LA, et al. Down-regulation of ZmEXPB6 (Zea mays β-Expansin 6) protein is correlated with salt-mediated growth reduction in the leaves of Z. mays L. J Biol Chem. 2015;290(18):11235–11245.
  • He X, Zeng J, Cao F, et al. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. J Exp Bot. 2015;66(22):7405–7419.
  • Zhou S, Han Y, Chen Y, et al. The involvement of expansins in response to water stress during leaf development in wheat. J Plant Physiol. 2015;183:64–74.
  • Ouyang KX, Liu MQ, Pian RQ, et al. Isolation and analysis of α-expansin genes in the tree Anthocephalus chinensis (Rubiaceae). Genet Mol Res. 2013;12(2):1061–1073.
  • Fox JED. Anthocephalus chinensis, the Laran tree of Sabah. Econ Bot. 1971;25(3):221–233.
  • Zhang X, Henriques R, Lin S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc. 2006;1(2):641–646.
  • Ouyang K, Li J, Huang H, et al. A simple method for RNA isolation from various tissues of the tree Neolamarckia cadamba. Biotechnol Biotechnol Equip. 2014;28(6):1008–1013.
  • Czechowski T, Stitt M, Altmann T, et al. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005;139(1):5–17.
  • Oh E, Yamaguchi S, Hu J, et al. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell. 2007;19(4):1192–1208.
  • Shatalov A, Evtuguin DV, Pascoal Neto C. (2-O-alpha-D-galactopyranosyl-4-O-methyl-alpha-D-glucurono)-D-xylan from Eucalyptus globulus Labill. Carbohydr Res. 1999;320(1–2):93–99.
  • Mellerowicz EJ, Baucher M, Sundberg B, et al. Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol. 2001;47(1–2):239–274.
  • Brummell DA, Harpster MH, Civello PM, et al. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell. 1999;11(11):2203–2216.
  • Sampedro J, Cosgrove DJ. The expansin superfamily. Genome Biol. 2005;6(12):242.
  • Fleming AJ, McQueen-Mason S, Mandel T, et al. Induction of leaf primordia by the cell wall protein expansin. Science. 1997;276(5317):1415–1418.
  • Liquori CL, Ricker K, Moseley ML, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science. 2001;293(5531):864–867.
  • Dal Santo S, Fasoli M, Cavallini E, et al. PhEXPA1, a Petunia hybrida expansin, is involved in cell wall metabolism and in plant architecture specification. Plant Signal Behav. 2011;6(12):2031–2034.
  • Wang G, Gao Y, Wang J, et al. Overexpression of two cambium‐abundant Chinese fir (Cunninghamia lanceolata) α‐expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls. Plant Biotechnol J. 2011;9(4):486–502.