1,547
Views
9
CrossRef citations to date
0
Altmetric
Article; Agriculture and Environmental Biotechnology

De novo assembly and characterization of the transcriptome of a wild edible mushroom Leucocalocybe mongolica and identification of SSR markers

&
Pages 1148-1159 | Received 25 Nov 2016, Accepted 19 Sep 2017, Published online: 28 Sep 2017

References

  • Imai S. On an edible Mongolian fungus “Pai-mo-ku.”. Proc Imper Acad Tokyo. 1937;13(7):280–282.
  • Yu XD, Deng H, Yao YJ. Leucocalocybe, a new genus for Tricholomamongolicum (Agaricales, Basidiomycota). Afr J Microbiol Res. 2011;5(31):5750–5756.
  • Dong D, Bau T. A study on the taxonomic position of Tricholoma mongolicum. J Fungal Res. 2013;11(3):172–5175.
  • Krishnamurthy KV. Textbook of biodiversity. Enfield (NH)): Science Publishers, Inc.; 2003.
  • Wu EQ, Bau T. Research advancement on Tricholoma mongolicum. Edible Fungi Chin. 2007;26:3–5.
  • Wu N, Chun L, Khasbagan. [Ewenki folk medicinal plants and its comparison with Mongolian medicine]. Chin J Ethnomed Ethnopharm. 2009;17:156–158. Chinese.
  • Bau S, Bao HY, Bau T, et al. Anti-tumor activity of Tricholoma mongolicum fruit bodies. Food Sci. 2012;33:280–284.
  • Wang DW, Shan YL, Bau T. Effect of extraction rate of supercritical CO2 extraction on Mongolia mushroom polysaccharide. Food Sci. 2006;27:107–110.
  • Hou Z, Zhang N, Wang DW. Study on technique of microwave extraction of Tricholoma mongolicum Imai polysaccharide. Food Sci. 2008;29:252–255.
  • Wu XT, Xu RH, Ren QW, et al. Factors affecting extracellular and intracellular polysaccharide production in submerged cultivation of Tricholoma mongolicum. Afr J Microbiol Res. 2012;6:909–916.
  • You QH, Yin XL, Zhang SN, et al. Extraction, purification, and antioxidant activities of polysaccharides from Tricholoma mongolicum Imai. Carbohyd Polym. 2014;99:1–10.
  • Ge SM, Yu YH, Zhang YF. Study on the extraction and antitumor activity from Tricholoma mongolicum polysaccharide. Mod Prev Med. 2009;36:3708–3711.
  • Bao L, Bai HP, Sa CF, et al. Antioxidant activity and vasular protecting effect of Tricholoma mongolicum polysaccharide. J Inner Mongolia Univ. 2014;45:498–501.
  • Wang HX, Ng TB, Ooi VEC. Lectin activity in fruiting bodies of the edible mushroom Tricholoma mongolicum. Iubmb Life. 1998;44(1):135–141.
  • Yao QZ, Wang F, Qu ZZ, et al. Study on the extraction technology of lectins from the mycelium produced by submerged fermentation of Tricholoma mongolicum. Acta Agr Boreali-Sinica. 2007;22:79–82.
  • Wang HX, Liu WK, Ng TB, et al. The immunomodulatory and antitumor activities of lectins from the mushroom Tricholoma mongolicum. Immunopharmacology. 1996;31:205–211.
  • Liu F, Ng TB, Wang HX, et al. Lectin from Tricholoma mongolicum S. Imai (Agaricomycetideae) mycelia stimulates gene expression of immunomodulating cytokines in mouse peritoneal macrophages and splenocytes. Int J Med Mushroom. 2005;7:243–248.
  • Wang HX, Ooi VEC, Chang ST, et al. A polysaccharide–peptide complex from cultured mycelia of the mushroom Tricholoma mongolicum with immunoenhancing and antitumor activities. Biochem Cell Biol. 1996;74:95–100.
  • Wang HX, Ng TB, Ooi VEC, et al. Actions of lectins from the mushroom Tricholoma mongolicum on macrophages, splenocytes and life-span in sarcoma-bearing mice. Anticancer Res. 1997;17:419–424.
  • Wang HX, Ng TB, Liu WK, et al. Isolation and characterization of two distinct lectins with antiproliferative activity from the cultured mycelium of the edible mushroom Tricholoma mongolicum. Int J Pept Res Ther. 1995;46:508–513.
  • Wang HX, Ooi VEC, Ng TB, et al. Hypotensive and vasorelaxing activities of a lectin from the edible mushroom Tricholoma mongolicum. Pharmacol Toxicol. 1996;79:318–323.
  • Zhao YX, Wu XL, Huang SZ. Advance on chemical constituents and bioactivity of the medicinal fungi in China. Guizhou Sci. 2013;31(1):18–27.
  • Ellegren H. Microsatellite mutations in the germline: implications for evolutionary inference. Trends Genet. 2000;16:551–558.
  • Esselink GD, Nybom H, Vosman B. Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting–peak ratios) method. Theor Appl Genet. 2004;109:402–408.
  • Kalia RK, Rai MK, Kalia S, et al. Microsatellite markers: an overview of the recent progress in plants. Euphytica. 2011;177:309–334.
  • Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997;278(5338): 631–637.
  • Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–652.
  • Shu S, Chen B, Zhou M, et al. De novo sequencing and transcriptome analysis of Wolfiporia cocos to reveal genes related to biosynthesis of triterpenoids. PLoS One. 2013 [cited 2017 Feb 16];8(8):e71350 [10p.]. DOI:10.1371/journal.pone.0071350
  • Yan X, Zhang X, Lu M, et al. De novo sequencing analysis of the Rosa roxburghii fruit transcriptome reveals putative ascorbate biosynthetic genes and EST-SSR markers. Gene. 2015;561(1):54–62.
  • Lombard V, Ramulu HG, Drula E, et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucl Acids Res. 2013;42(D1):D490–D495.
  • Badalyan SM.Potential of mushroom bioactive molecules to develop healthcare biotech products, In: Singh M, editor. Proceedings of the 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8); New Delhi: Yugantar Prakashan Pvt. Ltd., 2014 p. 373–378.
  • Duru ME, Çayan GT. Biologically active terpenoids from mushroom origin: a review. Rec Nat Prod. 2015;9:456–483.
  • Chen B, Gui F, Xie B, et al. Composition and expression of genes encoding carbohydrate-active enzymes in the straw-degrading mushroom Volvariella volvacea. PLoS One. 2013 [cited 2017 Feb 16];8(3):e58780 [9 p.]. DOI:10.1371/journal.pone.0058780
  • Chen L, Gong Y, Cai YL, et al. Genome sequence of the edible cultivated mushroom Lentinula edodes (Shiitake) reveals insights into lignocellulose degradation. PLoS One. 2016 [cited 2017 Feb 16];11(8):e0160336 [20 p.]. DOI:10.1371/journal.pone.0160336
  • Bing WU, Zhang XL, Cui BK, et al. Comparative genomic analysis of edible (medicinal) fungi reveals different ecological habitats. Mycosystema. 2015;34(4):742–760.
  • Ohm RA, Jong JF, Lugones LG, et al. Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol. 2010;28:957–963.
  • Martin F, Aerts A, Ahren D, et al. The genome sequence of the basidiomycete fungus Laccaria bicolor provides insights into the mycorrhizal symbiosis. Nature. 2008;452:88–92.
  • Xiao Y, Liu W, Dai Y, et al. Using SSR markers to evaluate the genetic diversity of Lentinula edodes’ natural germplasm in China. World J Microb Biot. 2010;26:527–536.
  • Ma KH, Lee GA, Lee SY, et al. Development and characterization of new microsatellite markers for the oyster mushroom (Pleurotus ostreatus). J Microbiol Biotechnol. 2009;19:851–857.
  • Xiang X, Li C, Li L, et al. Genetic diversity and population structure of Chinese Lentinula edodes revealed by InDel and SSR markers. Mycol Prog. 2016;15:1–13.
  • Zhang R, Hu D, Zhang J, et al. Development and characterization of simple sequence repeat (SSR) markers for the mushroom Flammulina velutipes. J Biosci Bioeng. 2010;110:273–275.
  • Zhang RY, Hu DD, Gu JG, et al. Development of SSR markers for typing cultivars in the mushroom Auricularia auricula-judae. Mycol Prog. 2012;11:587–592.
  • Liu XB, Feng B, Li J, et al. Genetic diversity and breeding history of winter mushroom (Flammulina velutipes) in China uncovered by genomic SSR markers. Gene. 2016;591(1):227–235.
  • Huang Y, Wu X, Jian D, et al. De novo transcriptome analysis of a medicinal fungi Phellinus linteus and identification of SSR markers. Biotechnol Biotechnol Equip. 2015;29(2):395–403.
  • Tan LQ, Peng M, Xu LY, et al. Fingerprinting 128 Chinese clonal tea cultivars using SSR markers provides new insights into their pedigree relationships. Tree Genet Genome. 2015 [cited 2017 Feb 16];11(5):90. DOI:10.1007/s11295-015-0914-6
  • Lusini I, Velichkov I, Pollegioni P, et al. Estimating the genetic diversity and spatial structure of Bulgarian Castanea sativa populations by SSRs: implications for conservation. Conserv Genet. 2014;15(2):283–293.