1,781
Views
6
CrossRef citations to date
0
Altmetric
Article; Biotechnological Equipment

EEG-modulated robotic rehabilitation system for upper extremity

, , , , , , , & show all
Pages 795-803 | Received 22 Feb 2017, Accepted 03 Feb 2018, Published online: 10 Feb 2018

References

  • Wolpaw JR, Birbaumer N, McFarland DJ, et al. Brain-computer interface for communication and control. Clin Neurophysiol. 2002;113(6):767–791.
  • van Gerven M, Farquhar J, Schaefer R, et al. The brain-computer interface cycle. J Neural Eng. 2009 [cited 2017 Mar 20];6(4):041001. DOI: 10.1088/1741-2560/6/4/041001.
  • Michmizos KP, Rossi S, Castelli E, et al. Robot-aided neurorehabilitation: a pediatric robot for ankle rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2015;23(6):1056–1067.
  • Yu HY, Huang SN, Chen G, et al. Human-robot interaction control of rehabilitation robots with series elastic actuators. IEEE Trans Robot. 2015;31(5):1089–1100.
  • Jamwal PK, Hussain S, Xie SQ. Three-stage design analysis and multicriteria optimization of a parallel ankle rehabilitation robot using genetic algorithm. IEEE Trans Autom Sci Eng. 2015;12(4):1433–1446.
  • Krebs HI, Hogan N, Aisen ML, et al. Robot–aided neurorehabilitation. IEEE Trans Rehab Eng. 1998;6(1):75–87.
  • Daly JJ, Wolpaw JR. Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7(11):1032–1043.
  • Kraus D, Naros G, Bauer R, et al. Brain-robot interface driven plasticity: distributed modulation of corticospinal excitability. Neuroimage. 2016;125:522–532.
  • Jiang N, Gizzi L, Mrachacz-Kersting N, et al. A brain–computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clin Neurophysiol. 2015;126(1):154–159.
  • Vuckovic A, Wallace L, Allan DB. Hybrid brain-computer interface and functional electrical stimulation for sensorimotor training in participants with tetraplegia: a proof-of-concept study. J Neurol Physical Therapy. 2015;39(1):3–14.
  • Hortal E, Planelles D, Resquin F, et al. Using a brain-machine interface to control a hybrid upper limb exoskeleton during rehabilitation of patients with neurological conditions. J Neuroeng Rehabil. 2015 [cited 2017 Mar 20];12(1):92. DOI: 10.1186/s12984-015-0082-9.
  • Shin YK, Lee DR, Hwang HJ, et al. A novel EEG-based brain mapping to determine cortical activation patterns in normal children and children with cerebral palsy during motor imagery tasks. NeuroRehabilitation. 2012;31(4):349–355.
  • You SH, Jang SH, Kim YH, et al. Cortical reorganization and associated locomotor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Stroke. 2005;36:1166–1171.
  • Jiang SH, You SH, Hallett M, et al. Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Arch Phys Med Rehabil. 2005;86(11):2218–2223.
  • Pfurtscheller G, Müller-Putz GR, Scherer R, et al. Rehabilitation with brain-computer interface systems. Computer. 2008;41(10):58–65.
  • Nam CS, Jeon Y, Kim YJ, et al. Movement imagery-related lateralization of event-related (de) synchronization (ERD/ERS): motor-imagery duration effects. Clin Neurophysiol. 2011;122(3):567–577.
  • Xu BG, Peng S, Song AG, et al. Robot-aided upper-limb rehabilitation based on motor imagery EEG. Int J Adv Robotic Syst. 2011;8(4):88–97.
  • Erdogan H, Palaska Y, Masazade E, et al. Vision-based game design and assessment for physical exercise in a robot-assisted rehabilitation system. IET Comp Vis. 2018;12(1):59–68.
  • Teramae T, Noda T, Morimoto J. EMG-based model predictive control for physical human–robot interaction: application for assist-as-needed control. IEEE Robot Automat Lett. 2018;3(1):210–217.