3,387
Views
21
CrossRef citations to date
0
Altmetric
Article; Pharmaceutical Biotechnology

Recombinant expression of LFchimera antimicrobial peptide in a plant-based expression system and its antimicrobial activity against clinical and phytopathogenic bacteria

, , &
Pages 714-723 | Received 17 Jul 2017, Accepted 09 Mar 2018, Published online: 09 May 2018

References

  • Silva ON, Mulder KC, Barbosa AE, et al. Exploring the pharmacological potential of promiscuous host-defense peptides: from natural screenings to biotechnological applications. Front Microbiol . 2011; 2:232:1–14.
  • Thevissen K, Kristensen HH, Thomma BP, et al. Therapeutic potential of antifungal plant and insect defensins. Drug Discov Today. 2007;12:966–971.
  • Li C, Blencke HM, Paulsen V, et al. Powerful workhorses for antimicrobial peptide expression and characterization. Bioeng Bugs. 2010;1:217–220.
  • Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 2008;1778:357–375.
  • Verraes C, Van Boxstael S, Van Meervenne E, et al. Antimicrobial resistance in the food chain: a review. Int J Environ Res Public Health. 2013;7:2643–2669.
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002;415:389–395.
  • Laverty G, Gorman SP, Gilmore BF. The potential of antimicrobial peptides as biocides. Int J Mol Sci. 2011;12:6566–6596.
  • Mookherjee N, Hancock RE. Cationic host defense peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci. 2007;64:922–933.
  • Da Rocha Pitta MG, da Rocha Pitta MG, Galdino SL. Development of novel therapeutic drugs in humans from plant antimicrobial peptides. Curr Protein Pept Sci. 2010;11:236–247.
  • Hancock RE. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect Dis. 2001;1:156–164.
  • Peters BM, Shirtliff ME, Jabra-Rizk MA. Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog. 2010 [cited 2017 Aug 20];6:e1001067. DOI: 10.1371/journal.ppat.1001067.
  • Li C, Haug T, Styrvold OB, et al. Strongylocins, novel antimicrobial peptides from the green sea urchin, Strongylocentrotus droebachiensis. Dev Comp Immunol. 2008;32:1430–1440.
  • Parachin NS, Mulder KC, Viana AAB, et al. Expression systems for heterologous production of antimicrobial peptides. Peptides. 2012;38:446–456.
  • Li Y. Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif. 2011;80:260–267.
  • Wang XJ, Wang XM, Teng D, et al. Recombinant production of the antimicrobial peptide NZ17074 in Pichia pastoris using SUMO3 as a fusion partner. Lett Appl Microbiol. 2014;59:71–78.
  • Calık P, Ata O, Gunes H, et al. Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: From carbon source metabolism to bioreactor operation parameters. Biochem Eng J. 2015;95:20–36.
  • Rosano GL, Ceccarelli EA. Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol. 2014 [cited 2017 Aug 20];5:172. DOI: 10.3389/fmicb.2014.00172.
  • Holaskova E, Galuszka P, Frebort I, et al. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv. 2015;33:1005–1023.
  • Montesinos E. Antimicrobial peptides and plant disease control. FEMS Microbiol Lett. 2007;270:1–11.
  • Huang J, Wu L, Yalda D, et al. Expression of functional recombinant human lysozyme in transgenic rice cell culture. Transgenic Res. 2002;11:229–239.
  • Basaran P, Rodriguez-Cerezo E. Plant molecular farming: opportunities and challenges. Crit Rev Biotechnol. 2008;28:153–172.
  • Xu J, Dolan MC, Medrano G, et al. Green factory: Plants as bioproduction platforms for recombinant proteins. Biotechnol Adv. 2012;30:1171–1184.
  • Fischer R, Stoger E, Schillberg S, et al. Plant-based production of biopharmaceuticals. Curr Opin Plant Biol. 2004;7:152–158.
  • Peterson RKD, Charles AJ. On risk and plant-based biopharmaceuticals. Trends Biotechnol. 2004;22:64–66.
  • Magnusdottir A, Vidarsson H, Björnsson JM, et al. Barley grains for the production of endotoxin-free growth factors. Trends Biotechnol. 2013;31:572–580.
  • Cabanos C, Ekyo A, Amari Y, et al. High-level production of lactostatin, a hypocholesterolemic peptide, in transgenic rice using soybean A1aB1b as carrier. Transgenic Res. 2013;22:621–629.
  • Morassutti C, De Amicis F, Skerlavaj B, et al. Production of a recombinant antimicrobial peptide in transgenic plants using a modified VMA intein expression system. FEBS Lett. 2002;519:141–146.
  • Davies HM. Commercialization of whole-plant systems for biomanufacturing of protein products: evolution and prospects. Plant Biotechnol J. 2010;8:845–861.
  • Tremblay R, Wang D, Jevnikar AM, et al. Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv. 2010;28:214–221.
  • García-Montoya IA, Cendón TS, Arévalo-Gallegos S, et al. Lactoferrin a multiple bioactive protein: an overview. Biochim Biophys Acta. 2012;1820:226–236.
  • Gifford JL, Hunter HN, Vogel HJ. Lactoferricin: a lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties. Cell Mol Life Sci. 2005;62:2588–2598.
  • Bolscher JG, Adao R, Nazmi K, et al. Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides. Biochimie. 2009;91:123–132.
  • Leon-Sicairos N, Canizalez-Roman A, De La Garza M, et al. Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus. Biochimie. 2009;91:133–140.
  • Bolscher J, Nazmi K, Van Marle J, et al. Chimerization of lactoferricin and lactoferrampin peptides strongly potentiates the killing activity against Candida albicans. Biochem Cell Biol. 2012;90:378–388.
  • Leo´n-Sicairos N, Angulo-Zamudio UA, Vidal JE, et al. Bactericidal effect of bovine lactoferrin and synthetic peptide lactoferrin chimera in Streptococcus pneumonia and the decrease in luxS gene expression by lactoferrin. Biometals. 2014;27:969–980.
  • Chahardoli M, Fazeli A, Ghbooli M. Antimicrobial activity of LFchimera synthetic peptide against plant pathogenic bacteria. Arch Phytopathology Plant Protect. 2017;50(19–20):1008–1018.
  • Haney EF, Nazmi K, Bolscher J, et al. Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin. Biochim Biophys Acta. 2012;1818:762–775.
  • Tang XH, Tang ZR, Wang SP, et al. Expression, purification, and antibacterial activity of bovine lactoferrampin–lactoferricin in Pichia pastoris. Appl Biochem Biotechnol. 2012;166:640–651.
  • Chahardoli M, Fazeli A, Ghbooli M. Recombinant production of bovine Lactoferrin-derived antimicrobial peptide in tobacco hairy roots expression system. Plant Physiol Biochem. 2018;123:414–421.
  • Murashige T, Skoog F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant. 1962;15:473–497.
  • Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissues. Phytochem Bull. 1987;19:11–150.
  • Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Schagger H, Jagow GV. Tricine-sodium dodecyl sulfate-polyacryl-amide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987;166:368–379.
  • Vincent J, Vincent H. Filter paper disc modification of the Oxford cup penicillin determination. Proc Soc Exp Biolo Med. 1944;55:162–164.
  • Mitra A, Zhang Z. Expression of a human lactoferrin cDNA in tobacco cells produces antibacterial protein. Plant Physiol. 1994;106:977–981.
  • Zhang Z, Coyne D, Vidaver AK, et al. Expression of human lactoferrin cDNA confers resistance to Ralstonia solanacearum in transgenic tobacco plants. Phytopathology. 1998;88:730–734.
  • Fukuta S, Kawamoto KI, Mizukami Y, et al. Transgenic tobacco plants expressing antimicrobial peptide bovine lactoferricin show enhanced resistance to phytopathogens. Plant Biotechnol. 2012;29:383–389.
  • Egelkrout E, Rajan V, Howard JA. Overproduction of recombinant proteins in plants. Plant Sci. 2012;184:83–101.
  • Sadeghi A, Mahdieh M, Salimi S. Production of Recombinant Human Interleukin-11 (IL-11) in transgenic tobacco (Nicotiana tabacum) plants. J Plant Biotechnol. 2016;43:432–437.
  • Tschofen M, Knopp D, Hood E, et al. Plant molecular farming: much more than medicines. Annu Rev Anal Chem. 2016;9:271–294.
  • Ganapathy M, Chakravarthi M, Jason Charles S, et al. Immunodiagnostic properties of Wucheraria bancrofti SXP-1, a potential filarial diagnostic candidate expressed in tobacco plant, Nicotiana tabacum. Appl Biochem Biotechnol. 2015;176:1889–1903.
  • Ma J, Drossard J, Lewis D, et al. Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants. Plant Biotechnol J. 2015;13:1106–1120.
  • Thao HT, Lan NTL, Tuong HM, et al. Expression analysis of recombinant Vigna radiata plant defensin 1 protein in transgenic tobacco plants. J App Biol Biotech. 2017;5:70–75.
  • Edgue G, Twyman RM, Beiss V. Antibodies from plants for bionanomaterials. WIREs Nanomed Nanobiotechnol. 2017 [cited 2017 Aug 20];9:e1462. DOI: 10.1002/wnan.1462.
  • Desai PN, Shrivastava N, Padh H. Production of heterologous proteins in plants: Strategies for optimal expression. Biotechnol Adv. 2010;28:427–435.
  • Odell JT, Nagy F, Chua NH. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature. 1985;313:810–812.
  • Shahriari AG, Bagheri A, Bassami MR, et al. Expression of hemagglutinin–neuraminidase and fusion epitopes of newcastle disease virus in transgenic tobacco. Electron J Biotechnol. 2016;22:38–43.
  • Lin HH, Huang LF, Su HC, et al. Effects of the multiple polyadenylation signal AAUAAA on mRNA 3′-end formation and gene expression. Planta. 2009;230(4):699–712.
  • Ma JKC, Drake PMW, Christou P. The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet. 2003;4:794–805.
  • Gustafssion C, Govindarajan S, Minshull J. Codon bias and heterologous protein expression. Trends Biotechnol. 2004;22(7):346–353.
  • Kang TJ, Han SC, Jang MO, et al. Enhanced expression of B-subunit of escherichia coli heat-labile enterotoxin in tobacco by optimization of coding sequence. Appl Biochem Biotechnol. 2004;117:175–187.
  • Deng T, Ge H, He H, et al. The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Expr Purifi. 2017;140:52–59.
  • Kawaguchi R, Bailey-Serres J. Regulation of translational initiation in plants. Curr Opin Plant Biol. 2002;5(5):460–465.
  • Nuttall J, Vine N, Hadlington JL, et al. ER-resident chaperone interactions with recombinant antibodies in transgenic plants. Eur J Biochem. 2002;269(24):6042–6051.
  • Conrad U, Fiedler U. Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological function and pathogen activity. Plant Mol Biol. 1998;38(1–2):101–109.
  • Wirth S, Calamante G, Mentaberry A, et al. Expression of active human epidermal growth factor (hEGF) in tobacco plants by integrative and non-integrative systems. Mol Breed. 2004;13(1):23–35.
  • Fiedler U, Philips J, Artsaenko O, et al. Optimisation of scFv antibody production in transgenic plants. Immunotechnology. 1997;3:205–216.
  • Düring K. Genetic engineering for resistance to bacteria in transgenic plants by introduction of foreign genes. Mol Breed. 1996;2:297–305.
  • Jan PS, Huang HY, Chen HM. Expression of a synthesized gene encoding cationic peptide cecropin B in transgenic tomato plants protects against bacterial diseases. Appl Environ Microbiol. 2010;76:769–775.
  • Coca M, Peñas G, Gómez J, et al. Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin A gene in transgenic rice. Planta. 2006;223:392–406.
  • Zhou M, Hu Q, Li Z, et al. Expression of a novel antimicrobial peptide Penaeidin4-1 in creeping bentgrass (Agrostis stolonifera L.) enhances plant fungal disease resistance. PLoS One. 2011 [cited 2017 Aug 20];6:e24677. DOI: 10.1371/journal.pone.0024677.
  • Badosa E, Moiset G, Montesinos L, et al. Derivatives of the antimicrobial peptide BP100 for expression in plant systems. PLoS One. 2013 [cited 2017 Aug 20];8:e85515. DOI: 10.1371/journal.pone.0085515.
  • Moghadam A, Niazi A, Afsharifar A, et al. Expression of a recombinant anti-HIV and anti-tumor protein, MAP30, in nicotiana tobacum hairy roots: A pH-stable and thermophilic antimicrobial protein. PLoS ONE. 2016 [cited 2017 Aug 20];11(7):e0159653. DOI: 10.1371/journal.pone.0159653.
  • Panteleev PV, Ovchinnikova TV. Improved strategy for recombinant production and purification of antimicrobial peptide tachyplesin I and its analogs with high cell selectivity. Biotechnol Appl Biochem. 2017;64:35–42.
  • Elhag O, Zhou D, Song Q, et al. Screening, expression, purification and functional characterization of novel antimicrobial peptide genes from Hermetia illucens (L.). PLoS ONE. 2017 [cited 2017 Aug 20];12(1):e0169582. DOI: 10.1371/journal.pone.0169582.
  • Sang M, Wei H, Zhang J, et al. Expression and characterization of the antimicrobial peptide ABP-dHC-cecropin A in the methylotrophic yeast Pichia pastoris. Protein Expr Purifi. 2017;140:44–51.
  • Young CL, Britton ZT, Robinson AS. Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnol J. 2012;7:620–634.
  • Abdoli Nasab M, Jalali Javaran M, Cusido RM, et al. Purification of recombinant tissue plasminogen activator (rtPA) protein from transplastomic tobacco plants. Plant Physiol Bioch. 2016;108:139–144.
  • Chen GH, Chen WM, Huang GT. Expression of recombinant antibacterial lactoferricin-related peptides from Pichia pastoris expression system. J Agric Food Chem. 2009;57:9509–9515.