1,166
Views
5
CrossRef citations to date
0
Altmetric
ARTICLE; FOOD BIOTECHNOLOGY

Effect of low-cost substrate on the fatty acid profiles of Mortierella alpina CBS 754.68 and Wickerhamomyces siamensis SAKSG

, , &
Pages 1228-1235 | Received 02 Jul 2017, Accepted 27 Apr 2018, Published online: 08 Jun 2018

References

  • Zhu M, Yu LJ, Li W, et al. Optimization of arachidonic acid production by fed-batch culture of Mortierella alpina based on dynamic analysis. Enzyme Microb Technol. 2006;38(6):735–740.
  • FAO/WHO. Fats and oils in human nutrition. Report of a Joint FAO/WHO Expert Consultation; 1993 Oct 19–26; Rome, Italy. FAO; 1994.
  • Higashiyama K, Fujikawa S, Park EY, et al. Production of arachidonic acid by Mortierella fungi. Biotechnol Bioprocess Eng. 2002;7(5):252–262.
  • Sakuradani E, Ando A, Oga J, et al. Improved production of various polyunsaturated fatty acids through filamentous fungus Mortierella alpina breeding. Appl Microbiol Biotechnol. 2009;84(1):1–10.
  • Samadlouie H-R, Hamidi-Esfahani Z, Soltani-Najafabadi S-M, et al. Statistical approach to optimization of fermentative production of oil and arachidonic acid from Mortierella alpina CBS 754.68. Afr J Microbiol Res. 2012;6(7):1559–1567.
  • Ling X-P, Zeng S-Y, Chen C-X, et al. Enhanced arachidonic acid production using a bioreactor culture of Mortierella alpina with a combined organic nitrogen source. Bioresour Bioproc. 2016 [cited 2017 Sep 29];3:43. DOI:10.1186/s40643-016-0121-9.
  • Lounds C, Eagles J, Carter AT, et al. Spore germination in Mortierella alpina is associated with a transient depletion of arachidonic acid and induction of fatty acid desaturase gene expression. Arch Microbiol. 2007;188(4):299–305.
  • Higashiyama K, Yaguchi T, Akimoto K, et al. Enhancement of arachidonic acid production by Mortierella alpina 1S-4. J Am Oil Chem Soc. 1998;75(11):1501–1505.
  • Papanikolaou S, Galiotou-Panayotou M, Fakas S, et al. Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. Eur J Lipid Sci Technol. 2007;109(11):1060–1070.
  • Yamada H, Shimizu S, Shinmen Y. Production of arachidonic acid by Mortierella elongata 1S-5. Agric Biol Chem. 1987;51(3):785–790.
  • Huang C, Zong M, Wu H, et al. Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol. 2009;100(19):4535–4538.
  • Tanyildizi MS, Özer D, Elibol M. Production of bacterial α-amylase by B. amyloliquefaciens under solid substrate fermentation. Biochem Eng J. 2007;37(3):294–297.
  • Finco AMO, Mamani LDJ, Carvalho JC, et al. Technological trends and market perspectives for production of microbial oils rich in omega-3. Crit Rev Biotechnol. 2017;37(5):656–671.
  • Hashemi M, Razavi SH, Shojaosadati SA, et al. The potential of brewer's spent grain to improve the production of α-amylase by Bacillus sp. KR-8104 in submerged fermentation system. N Biotechnol. 2011;28(2):165–172.
  • Zhao CH, Chi Z, Zhang F, et al. Direct conversion of inulin and extract of tubers of Jerusalem artichoke into single cell oil by co-cultures of Rhodotorula mucilaginosa TJY15a and immobilized inulinase-producing yeast cells. Bioresour Technol. 2011;102(10):6128–6133.
  • Li M, Liu G-L, Chi Z, et al. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass Bioenergy. 2010;34(1):101–107.
  • Keita I, Somda MK, Savadogo A, et al. Isolation and molecular identification of yeast strains from “Rabilé” a starter of local fermented drink. Afr J Biotechnol. 2016;15(20):823–829.
  • Thivend P, Mercier C, Guilbot A. Determination of starch with glucoamylase. Method Carbohydrate Chem. 1972;6:100–105.
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analyt Chem. 1959;31:426–428.
  • Metcalfe LD, Schmitz AA, Pelka JR. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal Chem. 1966;38(3):514–515.
  • Welker NE, Campbell LL. Comparison of the α-amylase of Bacillus subtilis and Bacillus amyloliquefaciens. J Bacteriol. 1967;94(4):1131–1135.
  • Kolusheva T, Marinova A. A study of the optimal conditions for starch hydrolysis through thermostable α-amylase. J Uni Chem Technol Metallurgy. 2007;42(1):93–96.
  • Simsek S, Ohm JB, Lu H, et al. Effect of pre-harvest sprouting on physicochemical properties of starch in wheat. Foods. 2014;3(2):194–207.
  • Tester RF, Karkalas J, Qi X. Starch structure and digestibility enzyme-substrate relationship. Worlds Poult Sci J. 2004;60(2):186–195.
  • Rendleman JA Jr. Hydrolytic action of α-amylase on high-amylose starch of low molecular mass. Biotechnol Appl Biochem. 2000;31(3):171–178.
  • Carré B. Causes for variation in digestibility of starch among feedstuffs. Worlds Poult Sci J. 2004;60(1):76–89.
  • BeMiller JN, Whistler R. Starch theory: chemistry and technology. New York (NY): Academic Press; 2009.
  • Qi X, Tester RF. Effect of composition and structure of native starch granules on their susceptibility to hydrolysis by amylase enzymes. Starch. 2016;68(9–10):811–815.
  • Perera C, Hoover H. The reactivity of porcine pancreatic alpha-amylase towards native, defatted and heat-moisture treated potato starches before and after hydroxypropylation. Starch. 1998;50(5):206–213.
  • Buttrose MS. Submicroscopic development and structure of starch granules in cereal endosperms. J Ultrastruct Res. 1960;4(3–4):231–257.
  • Din Z-U, Xiong H, Fei P. Physical and chemical modification of starches: a review. Crit Rev Food Sci Nutr. 2017;57(12):2691–2705.
  • Planchot V, Colonna P, Gallant DJ. Extensive degradation of native starch granules by alpha-amylase from Aspergillus fumigatus. J Cereal Sci. 1995;21(2):163–171.
  • Jahanbin K, Gohari AR, Moini S, et al. Isolation, structural characterization and antioxidant activity of a new water-soluble polysaccharide from Acanthophyllum bracteatum roots. Int J Biol Macromolec. 2011;49(4):567–572.
  • Jareonkitmongkol S, Shimizu S, Yamada H. Production of an eicosapentaenoic acid-containing oil by a Δ12 desaturase-defective mutant of Mortierella alpina 1S-4. J Am Oil Chem Soc. 1993;70:119–123.
  • Niba AT, Leong SL, Olstorpe M. Biocontrol efficacy of Wickerhamomyces anomalus in moist maize storage. Afr J Biotechnol. 2014;13(44):4208–4214.
  • Davies RJ. Yeast oil from cheese whey-process development. In: Moreton RS, editor. Single cell oil. London (UK:): Longma; 1988. p. 99–145.
  • Papanikolaou S, Rontou M, Belka A, et al. Conversion of biodiesel-derived glycerol into biotechnological products of industrial significance by yeast and fungal strains. Eng Life Sci. 2017;17(3):262–281.
  • Thevenieau F, Beopoulos A, Desfougeres T, et al. Uptake and assimilation of hydrophobic substrates by the oleaginous yeast Yarrowia lipolytica. In: Timmis KN, McGenity TJ, van der Meer JR, de Lorenzoeditor V, editors. Handbook of hydrocarbon and lipid microbiology. Vol. 2. Berlin: Springer; 2010.
  • Eroshin V, Satroutdinov A, Dedyukhin E, et al. Arachidonic acid production by Mortierella alpina with growth coupled lipid synthesis. Process Biochem. 2000;35(10):1171–1175.
  • Zhu M, Yu L-J, Wu Y-X. An inexpensive medium for production of arachidonic acid by Mortierella alpina. J Ind Microbiol Biotechnol. 2003;30(1):75–79.
  • Ho SY, Chen F. Lipid characterization of Mortierella alpina grown at different NaCl concentrations. J Agric Food Chem. 2008;56(17):7903–7909.
  • Hwang BH, Kim JW, Park CY, et al. High-level production of arachidonic acid by fed-batch culture of Mortierella alpina using NH4OH as a nitrogen source and pH control. Biotechnol Lett. 2005;27(10):731–735.
  • Ho SY, Jiang Y, Chen F. Polyunsaturated fatty acids (PUFAs) content of the fungus Mortierella alpina isolated from soil. J Agric Food Chem. 2007;55(10):3960–3966.
  • Lan WZ, Qin WM, Yu LJ. Effect of glutamate on arachidonic acid production from Mortierella alpina. Lett Appl Microbiol. 2002;35(4):357–360.
  • Gray J, Groeschler S, Le T, et al. Membrane structure (SWF). Davidson (NC): Davidson College; 2002. Retrieved 2007 Jan 11.
  • Eroshin VK, Dedyukhina EG, Satroutdinov AD, et al. Growth-coupled lipid synthesis in Mortierella alpina LPM 301, a producer of arachidonic acid. Microbiology. 2002;71(2):169–172.
  • Samadlouie H-R, Hamidi-Esfahani Z, Alavi S-M, et al. Expression analysis for genes involved in arachidonic acid biosynthesis in Mortierella alpina CBS 754.68. Braz J Microbiol. 2014;45(2):439–445.