1,812
Views
3
CrossRef citations to date
0
Altmetric
Article; Medical Biotechnology

Investigation of the relationship between MTHFR, IRS and CALCA gene polymorphisms and development of diabetic nephropathy in patients with type 2 diabetes mellitus

, , , , , & show all
Pages 1257-1265 | Received 23 Sep 2017, Accepted 04 Jun 2018, Published online: 14 Jun 2018

References

  • Hilary K, Aubert RE, Herman WH. Global burden of diabetes, 1995-2025. Diabetes Care. 1998;21:1414–1431.
  • Gloyn AL, McCarthy MI. The genetics of type 2 diabetes. Best Pract Res Clin Endocrinol Metab. 2001;15:293–308.
  • Farbstein D, Lewy AP. The genetics of vascular complications in diabetes mellitus. Cardiol Clin. 2010;28:477–496.
  • Tokel H. Ramazan ayında tip 2 dm hastalarının yeme alışkanlıkları ve karakteristik özellikleri [Eating habits and characteristics features of type 2 dm patients during Ramadan] [dissertion]. Istanbul (Turkey): İstanbul Şişli Eftal Eğitim ve Araştırma Hastanesi; 2008. Turkish.
  • Huang EJ. Homocysteine and other biochemical parameters in type 2 diabetes with different diabetic duration or diabetic retinopathy. Clinica Chimica Acta. 2006;366:293–298.
  • Bağrıaçık N. Tanı, komplikasyonlara yaklaşım ve tedavi konsensus el kitabı, Nova Nordisk diyabet servisi yayınları [Diagnosis, management of complications and treatment consensus handbook, Novo Nordisk diabetes service publications]. Istanbul (Turkey): 1997. Turkish.
  • National Diabetes Data Group. Diabetes in America. Bethesda: National Institute of Diabetes and Digestive and Kidney Diseases; 1995.
  • Książek P, Bednarek-Skublewska A, Buraczyńska M. The C677T MTHFR gene mutation and nephropathy in type 2 diabetes mellitus. Med Sci Monit. 2004;10(2):47–51.
  • Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes. 1983;32(Suppl 2):64–78.
  • Dikmen M. [Molecular biology of methylenetetrahydrofolate reductase (MTHFR) enzyme and its association with diseases]. Med J Kocatepe. 2004;5:9–16. Turkish.
  • Maeda M, Yamamoto I, Fukuda M, et al. MTHFR gene polymorphism is susceptible to diabetic retinopathy but not to diabetic nephropathy in Japanese type 2 diabetic patients. J Diabetes Complications. 2008;22:119–125.
  • Ukinc K, Ersoz HO, Karahan C, et al. Methyltetrahydrofolate reductase C677T gene mutation and hyperhomocysteinemia as a novel risk factor for diabetic nephropathy. Endocr. 2009;36:255–261.
  • Yiğit S, Karakuş N, Inanır A. Association of MTHFR gene C677T mutation with diabetic peripheral neuropathy and diabetic retinopathy. Mol Vision. 2013;19:1626–1630.
  • American Diabetes Association: Standard of medical care in diabetes. Diabetes Care. 2012;35:S11–S63.
  • Tang Y, Han X, Sun X, et al. Association study of a common variant near IRS1 with type 2 diabetes mellitus in Chinese Han population. Endocrine. 2013;43:84–91.
  • Pappa KI, Gazouli M, Economou K, et al. Gestational diabetes mellitus shares polymorphisms of genes associated with insulin resistance and type 2 diabetes in the Greek population. Gynecol Endocrinol. 2011;27:267–272.
  • Mousavinasab F, T¨ahtinen T, Jokelainen J, et al. Common polymorphisms in the PPARγ2 and IRS-1 genes and their interaction influence serum adiponectin concentration in young Finnish men. Mol Genet Metab. 2005;84:344–348.
  • Zhao X-M, Chen J, Yang L, et al. Association between IRS-2 G1057D polymorphism and risk of gastric cancer. World J Gastrointest Oncol. 2012; 15;4(1):9–15.
  • Udayasankar A. Calcitonin gene-related peptide and migraine: Implications for therapy [dissertation]. Rotterdam: Erasmus University; 2004.
  • Menona S, Buteria J, Roya B, et al. Association study of calcitonin gene-related polypeptide-alpha (CALCA) gene polymorphism with migraine. Brain Res. 2011;1378:119–124.
  • Wedemeyer C, Kauther MD, Hanenkamp S, et al. BCL2-938C>A and CALCA-1786T>C polymorphısms in aseptıc loosened total hip arthroplasty. Eur J Med Res. 2009;14:250–255.
  • Sutherland HG, Buteri J, Menon S, et al. Association study of the calcitonin gene-related polypeptide-alpha (CALCA) and the receptor activity modifying 1 (RAMP1) genes with migraine CGRP. Gene. 2013;515:187–192.
  • Luo XL, Yang TL, Chen XP, et al. Association of CALCA genetic polymorphism with essential hypertension. Chin Med J. 2008;121(15):1407–1410.
  • Guldiken B, Sipahi T, Guldiken S, et al. Glu298Asp polymorphism of the endothelial nitric oxide synthase gene in Turkish patients with ischemic stroke. Mol Biol Rep. 2009;36:1539–1543.
  • Sun J, Xu Y, Zhu Y, et al. Genetic polymorphism of methylenetetrahydrofolate reductase as a risk factor for diabetic nephropathy in Chinese type 2 diabetic patients. Diabetes Res Clin Pract. 2004;64:185–190.
  • Sun J, Xu Y, Zhu Y, et al. The relationship between MTHFR gene polymorphisms, plasma homocysteine levels and diabetic retinopathy in type 2 diabetes mellitus. Chin Med J. 2003;116:145–147.
  • Russo GT, Benedetto AD, Magazzu D, et al. Mild hyperhomocysteinemia, C677T polymorphism on methylenetetrahydrofolate reductase gene and the risk of macroangiopathy in type 2 diabetes: A prospective study. Acta Diabetol. 2011;48:95–101.
  • Kaye JM, Stanton KG, McCann VJ, et al. Homocysteine, folate, methylenetetrahydrofolate reductase genotype and vascular morbidity in diabetic subjects. Clin Sci. 2002;102:631–637.
  • Sharaf SM, Gawish HH, Elsherbiny EM. Methylenetetrahydrofolate reductase (Mthfr C677t) gene polymorphism effect on development of diabetic nephropathy in Egyptian patients with type 2 diabetes mellitus. Life Sci J. 2012;9(2):874–880.
  • Wang D, Bai L, Zhai Q, et al. Association of MTHFR C677T and A1298C polymorphisms with the development of type 2 diabetic nephropathy and their interaction with environmental factors. Int J Clin Exp Pathol. 2017;10(3):3778–3785.
  • El Hajj Chehadeh SW, Jelinek HF, Al Mahmeed WA, et al. Relationship between MTHFR C677T and A1298C gene polymorphisms and complications of type 2 diabetes mellitus in an Emirati population. Meta Gene. 2016;9:70–75.
  • Zhou T-B, Drummen GPC, Jiang Z-P, et al. Methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism and diabetic nephropathy susceptibility in patients with type 2 diabetes mellitus. Ren Fail. 2015;37(8):1247–1259.
  • Al-Khafaji SM, Al-janabi AM, Faris SA. The significant of C677T methylenetetrahydrofolate reductase MTHFR gene mutation in Iraqi patients with type 2 diabetic nephropathy. Int J Sci Eng Res. 2017;8(5):339–354.
  • Ramanathan G, Harichandana B, Kannan S, et al. Association between end-stage diabetic nephropathy and MTHFR (C677T and A1298C) gene polymorphisms. Nephrology (Carlton). 2017 Forthcoming; DOI: 10.1111/nep.13208.
  • Asgarbeik S, Mohammad amoli M, Angaji SA, et al. Assocıatıon of C677T MTHFR gene polymorphısms with diabetıc nephropathy. İJDLD. 2017;16(3):157–163.
  • Rahimi M, Hasanvand A, Rahimi Z, et al. Synergistic effects of the MTHFR C677T and A1298C polymorphisms on the increased risk of micro- and macro-albuminuria and progression of diabetic nephropathy among Iranians with type 2 diabetes mellitus. Clin Biochem. 2010;43:1333–1339.
  • Mtiraoui N, Ezzidi I, Chaieb M, et al. MTHFR C677T and A1298C gene polymorphisms and hyperhomocysteinemia as risk factors of diabetic nephropathy in type 2 diabetes patients. Diabetes Res Clin Pract. 2007;75:99–106.
  • Moczulski D, Fojcik H, Zukowska-Szczechowska E, et al. Effects of the C677T and A1298C polymorphisms of the MTHFR gene on the genetic predisposition for diabetic nephropathy. Nephrol Dial Transplant. 2003;18:1535–1540.
  • Haiyan C, Fang W, Lihua W, et al. MTHFR gene C677T polymorphism and type 2 diabetic nephropathy in Asian populations: a meta-analysis. Int J Clin Exp Med. 2015;8(3):3662–3670.
  • Fodinger M, Horl WH, Sunder-Plassman G. Molecular biology of 5,10- methylenetetrahydrofolate reductase. J Nephrol. 2000;13(1):20–33.
  • Shpichinetsky V, Raz I, Friedlander Y, et al. The association between two common mutations C677T and A1298C in human methylenetetrahydrofolate reductase gene and the risk for diabetic nephropathy in type II diabetic patients. J Nutr. 2000;130:2493–2497.
  • Mc Cully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol. 1969;56:111–128.
  • Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in MTHFR. Nat Genet. 1995;10:111–113.
  • Greene DA, Lattimer SA, Sima AAF. Sorbitol, phosphoinositides and sodium - potassium ATP ase in the pathogenesis of diabetic complications. N Engl J Med. 1987;3(6):559–606.
  • Labovitz HE. Diagnosis and classification of diabetes mellitus. In: Lebovitz HE, editor. Therapy for diabetes mellitus and related disorders. 3rd Ed. ed. Virginia: American Diabetes Association Clinical Education Series; 1998. p. 4–7.
  • Canadian Institutes for Health Information. Annual report 1999, Volume 1: Dialysis and renal transplantation. Canadian Organ Replacement Register. Ottawa (ON): Canadian Institutes for Health Information; 1999.
  • Bouzakri K, Zachrisson A, Al-Khalili L, et al. siRNA-based gene silencing reveals specialized roles of IRS-1/Akt2 and IRS-2/Akt1 in glucose and lipid metabolism in human skeletal muscle. Cell Metab. 2006;4:89–96.
  • Baroni M, D'Andrea M, Montali A, et al. A Common mutation of the insulin receptor substrate-1 gene is a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol. 1999;19:2975–2980.
  • Hribal M, Federici M, Porzio O, et al. The Gly3Arg972 amino acid polymorphism in IRS-1 affects glucose metabolism in skeletal muscle cells. J Clin Endocrinol Metab. 2000;85:2004–2013.
  • Hajduch E, Alessi D, Hemmings B, et al. Constitutive activation of protein kinase B alpha by membrane targeting promotes glucose and system A amino acid transport, protein synthesis, and inactivation of glycogen synthase kinase 3 in L6 muscle cells. Diabetes. 1998;47:1006–1013.
  • Krook A, Roth RA, Jiang XJ, et al. Insulin-stimulated Akt kinase activity is reduced in skeletal muscle fromNIDDM subjects. Diabetes. 1998;47:1281–1286.
  • Kim YB, Nikoulina SE, Ciaraldi TP, et al. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. J Clin Invest. 1999;104:733–741.
  • Lee C, Ahn C, Jeon J, et al. Association of insulin receptor substrate-1 G972R variant with nonsmall cell lung cancer risk. Tuberc Respir Dis. 2009;67(1):8–13.
  • Laura E, Martinez G, Miguel C, et al. A replication study of the IRS1, CAPN10, TCF7L2, and PPARG gene polymorphisms associated with type 2 diabetes in two different populations of Mexico. Ann Hum Genetics. 2011;75:612–620.
  • Fulden S, Afig B, Sefa S, et al. Insulin receptor substrate gene polymorphisms are associated with metabolic syndrome but not with its components. J Diabetes Mellitus. 2013;3(4):214–220.
  • Kozarova M, Javorsky M, Stanckova A, et al. Relationship of five type 2 diabetes gene candidate polymorphism to the age at diagnosis of diabetes in Slovakian population. Bratisl Lek Listy. 2010;111(3):150–152.
  • Almind K, Inoue G, Pedersen O, et al. A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling. J Clin Invest. 1996;97:2569–2575.
  • Yoshimura R, Araki E, Ura S, et al. Impact of natural IRS-1 mutations on insulin signals. Diabetes. 1997;46:929–936.
  • Arikoglu H, Hepdogru MA, Kaya DE, et al. IRS1 gene polymorphisms Gly972Arg and Ala513Pro are not associated with insulin resistance and type 2 diabetes risk in non-obese Turkish population. Meta Gene. 2014;2:579–585.
  • Bodhini D, Phil M, Radha V, et al. Association study of IRS1 gene polymorphisms with type 2 diabetes in South Indians. Diabetes Technol Therapeutıcs. 2011;13(7):767–772.
  • Velayuthan MR, Elumalai R, Periyasamy S, et al. Insulin receptor gene polymorphisms modify the progression of kidney failure in diabetic nephropathy patients. J Prev Epidemiol. 2017; [cited 2017 Dec 21];2(1):e06. Available from: http://annresantioxidants.com/index.php/JPR/article/view/249.
  • Fritsche A, Madaus A, Renn W, et al. The prevalent Gly1057Asp polymorphism in the insulin receptor substrate-2 gene is not associated with impaired insulin secretion. J Clin Endocrinol Metab. 2001;86:4822–4825.
  • El Mokadem SA, Lautier C, Macari F, et al. Role of allelic variants Gly972Arg of IRS-1 and Gly1057Asp of IRS-2 in moderate-to severe insulin resistance of women with polycystic ovary syndrome. Diabetes. 2001;50:2164–2168.
  • Mammarella S, Romano F, Di Valerio A, et al. Interaction between the G1057D variant of IRS-2 and overweight in the pathogenesis of type 2 diabetes. Hum Mol Genet. 2000;9:2517–2521.
  • Almind K, Frederiksen SK, Bernal D, et al. Search for variants of the gene-promoter and the potential phosphotyrosine encoding sequence of the insulin receptor substrate-2 gene: evaluation of their relation with alterations in insulin secretion and insulin sensitivity. Diabetologia. 1999;42:1244–1249.
  • Stefan N, Fritsche A, Machicao F, et al. The Gly1057Asp polymorphism in IRS-2 interacts with obesity to affect beta cell function. Diabetologia. 2004;47:759–761.
  • Buervenich S, Xiang F, Sydow O, et al. Identification of four novel polymorphisms in the calcitonin/alpha-CGRP (CALCA) gene and an investigation of their possible associations with Parkinson disease, schizophrenia, and manic depression. Hum Mutat. 2001;17:435–436.