1,244
Views
8
CrossRef citations to date
0
Altmetric
Articles

The complete chloroplast genome of the miracle tree Neolamarckia cadamba and its comparison in Rubiaceae family

, , &
Pages 1087-1097 | Received 13 Mar 2018, Accepted 28 Jun 2018, Published online: 09 Oct 2018

References

  • Huang H, Li JC, Ouyang KX, et al. Direct adventitious shoot organogenesis and plant regeneration from cotyledon explants in Neolamarckia cadamba. Plant Biotech. 2014;31(2):115–121.
  • Lal M, Dutt D, Tyagi CH, et al. Characterization of Anthocephalus cadamba and its delignification by kraft pulping. Tappi J. 2010;9(3):30–37.
  • Pandey A, Negi PS. Traditional uses, phytochemistry and pharmacological properties of Neolamarckia cadamba: a review. J Ethnopharmacol. 2016;181:118–135.
  • The Ayurvedic Pharmacopoeia of India. New Delhi, India: Department of AYUSH, Ministry of Health and Family Welfare, Govt. of India, Part I, vol. II, 1st ed.; 2011.
  • Chandel M, Sharma U, Kumar N, et al. In vitro studies on the antioxidant/antigenotoxic potential of aqueous fraction from Anthocephalus cadamba bark. In: Sudhakaran PR, editor. Perspectives in cancer prevention—translational cancer research. New Delhi, India: Springer; 2014. p. 61–72.
  • Kumar A, Chowdhury SR, Jatte KK, et al. Anthocephaline, a new indole alkaloid and cadambine, a potent inhibitor of DNA topoisomerase IB of Leishmania donovani (LdTOP1LS), isolated from Anthocephalus cadamba. Nat Prod Commun. 2015;10(2):297–299.
  • Khare CP. Indian herbal remedies: rational western therapy, ayurvedic and other traditional usage, botany. New York, USA: Springer; 2011. p. 66–67.
  • Jeyalalitha T, Murugan K, Umayavalli M. Preliminary phytochemical screening of leaf extracts of Anthocephalus cadamba. Int J Recent Sci Res. 2015;6:6608–6611.
  • Pandey A, Negi PS. Phytochemical composition, in vitro antioxidant activity and antibacterial mechanisms of Neolamarckia cadamba fruits extracts. Nat Prod Res. 2017;32(10):1189–1192.
  • Nanda GC, Dash SK, Das I. Screening of vishaghna (antitoxic) plants in Ayurveda. Indian J Pharm Sci Res. 2014;4:43–48.
  • Li JC, Hu XS, Huang XL, et al. Functional identification of an EXPA gene (NcEXPA8) isolated from the tree Neolamarckia cadamba. Biotechnol Biotechnol Equip. 2017;31(6):1116–1125.
  • Sugiura M. The chloroplast genome. Plant Mol Biol. 1992;19(1):149–168.
  • Wicke S, Schneeweiss GM, Müller KF, et al. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol. 2011;76(3–5):273–297.
  • Neuhaus HE, Emes MJ. Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol. 2000;51(51):111–140.
  • Liu J, Qi ZC, Zhao YP, et al. Complete cpDNA genome sequence of Smilax china and phylogenetic placement of Liliales-influences of gene partitions and taxon sampling. Mol Phylogenet Evol. 2012;64(3):545–562.
  • Zhang YX, Iaffaldano BJ, Zhuang XF, et al. Chloroplast genome resources and molecular markers differentiate rubber dandelion species from weedy relatives. BMC Plant Biol. 2017;17(1):34. DOI:10.1186/s12870-016-0967-1.
  • Asaf S, Waqas M, Khan AL, et al. The complete chloroplast genome of wild rice (Oryza minuta) and its comparison to related species. Front Plant Sci. 2017;8:304. DOI:10.3389/fpls.2016.00843.
  • Kaila T, Chaduvla PK, Rawal HC, et al. Chloroplast genome sequence of clusterbean (Cyamopsis tetragonoloba L.): genome structure and comparative analysis. Genes. 2017;8(9):e212. DOI:10.3390/genes8090212.
  • Zienkiewicz M, Krupnik T, Drożak A, et al. Transformation of the Cyanidioschyzon merolae chloroplast genome: prospects for understanding chloroplast function in extreme environments. Plant Mol Biol. 2017;93(1–2):171–183.
  • Li D, Han X, Zuo J, et al. Construction of rice site-specific chloroplast transformation vector and transient expression of EGFP gene in Dunaliella salina. J Biomed Nanotechnol. 2011;7(6):801. DOI:10.1166/jbn.2011.1339.
  • Hao W, Fan S, Hua W, et al. Effective extraction and assembly methods for simultaneously obtaining plastid and mitochondrial genomes. PLoS ONE. 2014;9(9):e108291. DOI:10.1371/journal.pone.0108291.
  • Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–595.
  • Samson N, Bausher MG, Lee SB, et al. The complete nucleotide sequence of the coffee (Cofea arabica L.) chloroplast genome: organization and implications for biotechnology and phylogenetic relationships amongst angiosperms. Plant Biotechnol J. 2007;5(2):339–353.
  • Liu C, Shi LC, Zhu YJ, et al. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics. 2012;13(1):715. DOI:10.1186/1471-2164-13-715.
  • Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33:686–689.
  • Lohse M, Drechsel O, Kahlau S, et al. Organellar genome DRAW-a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 2013;41:W575–W581.
  • Frazer KA, Pachter L, Poliakov A, et al. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 2004;32:W273–W279.
  • Kurtz S, Choudhuri JV, Ohlebusch E, et al. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2011;29(22):4633–4642.
  • Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313.
  • Nylander JAA. MrModeltest v2. Program distributed by the author. Uppsala (Sweden): Evolutionary Biology Centre, Uppsala University; 2004.
  • Ronquist F, Huelsenbeck JP. MRBAYES 3: bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574.
  • Qian J, Song JY, Gao HH, et al. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS ONE. 2013;8(2):e57607. DOI:10.1371/journal.pone.0057607.
  • Xu JW, Feng DJ, Song GS, et al. The first intron of rice EPSP synthase enhances expression of foreign gene. Sci China C Life Sci. 2003;46(6):561–569.
  • Wu DY, Bi CW, Wang XL, et al. The complete chloroplast genome sequence of an economic plant Coffea canephora. Mitochondrial DNA B. 2017;2(2):483–485.
  • Duan RY, Huang MY, Yang LM, et al. Characterization of the complete chloroplast genome of Emmenopterys henryi (Gentianales: Rubiaceae), an endangered relict tree species endemic to China. Conserv Genet Resour. 2017;9(3):1–3.
  • Zhang RJ, Li Q, Gao JL, et al. The complete chloroplast genome sequence of the medicinal plant Morinda officinalis (Rubiaceae), an endemic to China. Mitochondrial DNA A. 2016;27(6):4324–4325.
  • Chen JH, Hao ZD, Xu HB, et al. The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. Front Plant Sci. 2015;6:447. DOI:10.3389/fpls.2015.00447.
  • Dong WP, Liu J, Yu J, et al. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS ONE. 2012;7:e35071. DOI:10.3389/fpls.2015.00447.
  • Li Z, Long HX, Zhang L, et al. The complete chloroplast genome sequence of tung tree (Vernicia fordii): organization and phylogenetic relationships with other angiosperms. Sci Rep. 2017;7:1869. DOI:10.1038/s41598-017-02076-6.
  • Zhou JG, Chen XL, Cui YX, et al. Molecular structure and phylogenetic analyses of complete chloroplast genomes of two Aristolochia medicinal species. Int J Mol Sci. 2017;18(9):1839. DOI:10.3390/ijms18091839.
  • Asaf S, Khan AL, Khan MA, et al. Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: structures and comparative analysis. Sci Rep. 2017;7:7556. DOI:10.1038/s41598-017-07891-5.
  • Timme RE, Kuehl JV, Boore JL, et al. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am J Bot. 2004;94(3):302–312.
  • Thakur AK, Singh KH, Singh L, et al. SSR marker variations in Brassica species provide insight into the origin and evolution of Brassica amphidiploids. Hereditas. 2018;155(1):6. DOI:10.1186/s41065-017-0041-5.
  • Kirungu JN, Deng YF, Cai XY, et al. Simple sequence repeat (SSR) genetic linkage map of D genome diploid cotton derived from an interspecific cross between Gossypium davidsonii and Gossypium klotzschianum. Int J Mol Sci. 2018;19(1):204. DOI:10.3390/ijms19010204.
  • Taheri S, Lee AT, Yusop MR, et al. Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules. 2018;23(2):399. DOI:10.3390/molecules23020399.
  • Kuang DY, Wu H, Wang YL, et al. Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. Genome. 2011;54(8):663–673.
  • Verma D, Samson NP, Koya V, et al. A protocol for expression of foreign genes in chloroplasts. Nat Protoc. 2008;3(4):739–758.
  • Verma D, Daniell H. Chloroplast vector systems for biotechnology applications. Plant Physiol. 2007;145(4):1129–1143.
  • Lee SM, Kang K, Chung H, et al. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells. 2006;21(3):401–410.
  • Ng PK, Lin SM, Lim PE, et al. Complete chloroplast genome of Gracilaria firma (Gracilariaceae, Rhodophyta), with discussion on the use of chloroplast phylogenomics in the subclass Rhodymeniophycidae. BMC Genomics. 2017;18(1):40. DOI:10.1186/s12864-016-3453-0.
  • Huang H, Shi C, Liu Y, et al. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evol Biol. 2014;14(1):151. DOI:10.1186/1471-2148-14-151.
  • Asaf S, Khan AL, Khan AR, et al. Complete chloroplast genome of Nicotiana otophora and its comparison with related species. Front Plant Sci. 2016;7:843. DOI:10.3389/fpls.2016.00843.