2,260
Views
20
CrossRef citations to date
0
Altmetric
Articles

Degradation of DDT by gold nanoparticles synthesised using Lawsonia inermis for environmental safety

, &
Pages 1174-1182 | Received 05 Dec 2017, Accepted 16 Jul 2018, Published online: 26 Aug 2018

References

  • Kennish MJ, Ruppe BE. DDT contamination in selected estuarine and coastal marine finfish and shellfish of New Jersey. Arch Environ Cont Toxicol. 1996;31:256–262.
  • Kelce WR, Stone CR, Laws SC, et al. Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature. 1995;375:581–585.
  • Anfossi L, Giraudi G, Tozzi C, et al. Development of a non-competitive immunoassay for monitoring DDT its metabolites and analogues in water samples. Anal Chim Acta. 2004;506:87–95.
  • Bochkareva AE, Fini F, Eremin S, et al. Development of a heterogeneous chemiluminescent flow immunoassay for DDT and related compounds. Anal Chim Acta. 2002;453:43–52.
  • Foght J, April T, Biggar K, et al. Bioremediation of DDT-contaminated soils: a review. Bioremediat J. 2001;5:225–246.
  • Sayles GD, You G, Wang M, et al. DDT, DDD, and DDE dechlorination by zero-valent iron. Environ Sci Technol. 1997;31:3448–3454.
  • Mohamed EF. Nanotechnology: Future of environmental air pollution control. Environ Manage Sustain Dev. 2017;6:429–454.
  • Corsi I, Winther-Nielsen M, Sethi R, et al. Ecofriendly nanotechnologies and nanomaterials for environmental applications: key issue and consensus recommendations for sustainable and ecosafe nanoremediation. Ecotoxicol Environ Saf. 2018;154:237–244.
  • Linhai B, Shengnan T, Qinghuan M. Green synthesis, characterization and application of proanthocyanidins-functionalized gold nanoparticles. Nanomaterials. 2018;8:53. DOI:10.3390/nano8010053
  • Christof MN. Nanoparticles, proteins and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed Engl. 2001;40:4128–4158.
  • Nair AS, Pradeep T. Halocarbon mineralization and catalytic destruction by metal nanoparticles. Curr Sci. 2003;84:1560–1564.
  • Nair AS, Tom RT, Suryanarayanan V, et al. ZrO2 bubbles from core–shell nanoparticles. J Mater Chem. 2003;13:297–300.
  • Ananpattarachai J, Kajitvichyanukul P. Photocatalytic degradation of p,p-DDT under UV and visible light using interstitial N-doped TiO2. J Environ Sci Health B. 2015;50:247–260.
  • Starnes D. In planta “green engineering” of variable sizes and exotic shapes of gold nanoparticles: An integrative eco-friendly approach. [Masters’ Thesis]. Nashville (TN): Belmont University; 2018.
  • Pattanayak M, Muralikrishnan T, Nayak PL. Green synthesis of gold nanoparticles using Daucus carota (carrot) aqueous extract. World J Nano Sci Technol. 2014;3:52–58.
  • Gautam SK, Suresh S. Studies on dechlorination of DDT (1,1,1-trichloro-2,2- bis(4-chlorophenyl) ethane) using magnesium/palladium bimetallic system. J Hazard Mater. 2007;139:146–153.
  • Aguilar T, Navas J, Alcantara R, et al. A route for the synthesis of Cu doped TiO2 nanoparticles with very low band gap. Chem Phys Lett. 2013;571:49–53.
  • Vijayakumar R, Devi V, Adavallan K, et al. Green synthesis and characterization of gold nanoparticles using extract of anti-tumor potent Crocus sativus. Physica E. 2011;44:665–671.
  • Kumar P, Singh P, Kumari K. A green approach for the synthesis of gold nanotriangles using aqueous leaf extract of Callistemon viminalis. Mater Lett. 2011;65:595–597.
  • Coman C, Leopold LF, Ruginǎ OD, et al. Green synthesis of gold nanoparticles by Allium sativum extract and their assessment as SERS substrate. J Nanopart Res. 2014;16:2158. DOI: 10.1007/s11051-013-2158-4
  • Elavazhagan T, Arunachalam KD. Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int J Nanomedicine. 2011;6:1265–1278.
  • Nath D, Banerjee P. Green nanotechnology – a new hope for medical biology. Environ Toxicol Pharmacol. 2013;36:997–1014.
  • Geraldes AN, da Silva AA, Leal J, et al. Green nanotechnology from plant extracts:synthesis and characterization of gold nanoparticles. Adv Nanopart. 2016;5:176–185.
  • Mata R, Bhaskaran A, Sadras SR. Green-synthesized gold nanoparticles from plumeria alba flower extract to augment catalytic degradation of organic dyes and inhibit bacterial growth. Particuology. 2016;24:78–86.
  • Gurunathan B, Bathrinarayanan PV, Muthukumarasamy VK, et al. Characterization of intracellular gold nanoparticles synthesized by biomass of Aspergillus terreus. Acta Metall Sin Engl. 2014;27:569–572.
  • Mukherjee S, Sushma V, Patra S, et al. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology. 2012;23:455103–455116.
  • Sonavanea G, Tomodaa K, Makinoa K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B. 2008;66:274–280.
  • Ankita S, Bhanu S, Arvind G. Synthesis and characterization of dodecanethiol-stabilized gold nanoparticles. Indian J Pure Appl Phys. 2014;52:93–100.
  • Ankamwar B, Chaudhary M, Sastry M. Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg M. 2005;35:19–26.
  • Abd El-Aziz ARM. Eco-friendly biosynthesis of silver nanoparticles by Aspergillus parasiticus. Dig J Nanomater Biostruct. 2014;9:1485–1492.
  • Kim YH, Carraway ER. Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ Sci Technol. 2000;34:2014–2017.
  • Vanaja M, Paulkumar K, Baburaja M, et al. Degradation of methylene blue using biologically synthesized silver. Nanoparticles 2014;2014:742346. DOI: 10.1155/2014/742346
  • Borja JQ, Cangco LM, Belinda MC, et al. Degradation of dichlorodiphenyltrichloro-ethane (DDT) using zero-valent iron. Paper presented at: De La Salle University Research Congress 2013; 2013 Mar 7–9; Manila, Philippines. Available from: http://www.dlsu.edu.ph/conferences/dlsu_research_congress/2013/_pdf/SEE/SEE-V-040.pdf
  • Sibanda MM, Focke WW, Labuschagne FJ, et al. Degradation of insecticides used for indoor spraying in malaria control and possible solutions. Malaria J. 2011;10:307. DOI: 10.1186/1475-2875-10-307
  • Segal-Rosenheimer M, Dubowski Y. Photolysis of thin films of cypermethrin using in situ FTIR monitoring: products, rates and quantum yields. J. Photochem Photobiol A. 2008;200:262–269.
  • Baudot C, Tan CM, Kong JC. FTIR spectroscopy as a tool for nano-material characterization. Infrared Phys Technol. 2010;53:434–438.
  • Piechocki W, Gryglewicz GY, Gryglewicz S. Hydrodechlorination of DDT and chloroalkanes over carbon-supported Ni–Mo catalyst. J Hazard Mater. 2009;163:1397–1402.
  • Ukisu Y. Complete dechlorination of DDT and its metabolites in an alcohol mixture using NaOH and Pd/C catalyst. J Hazard Mater. 2008;152:287–292.
  • Tian H, Li J, Mu Z, et al. Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Sep Purif Technol. 2009;66:84–89.
  • Graham LJ, Jovanovic G. Dechlorination of p-chlorophenol on a Pd/Fe catalyst in a magnetically stabilized fluidized bed, implication for sludge and liquid remediation. Chem Eng Sci. 1999;54:3085–3093.
  • Engelmann MD, Doyle JG, Cheng IF. The complete dechlorination of DDT by Mg0/Pd bimetallic particles. Chemosphere. 2001;43:195–198.
  • Engelmann MD, Hutcheson R, Henscheid K, et al. Simultaneous determination of total PCB and DDT by dechlorination with Fe/Pd and Mg/Pd bimetallic particles and FIDG. Microchem J. 2003;74:19–25.
  • Eggen T, Majcherczyk A. Effects of zero-valent iron (Fe0) and temperature on the transformation of DDT and its metabolites in lake sediment. Chemosphere. 2006;62:1116–1125.