2,589
Views
4
CrossRef citations to date
0
Altmetric
Articles

Determining an appropriate unstructured kinetic model for batch ethanol fermentation data using a direct search method

, , , &
Pages 1167-1173 | Received 25 Nov 2017, Accepted 19 Jul 2018, Published online: 27 Aug 2018

References

  • Bai FW, Anderson W, Moo-Young M. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv. 2008;26:89–105.
  • Lin Y, Tanaka S. Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol. 2006;69:627–642.
  • Mussatto SI, Dragone G, Guimarães PM, et al. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv. 2010;28(6):817–830.
  • Sulfahri, Nímatuzahroh, Manuhara SW. Studies on the Hungate technique for ethanol fermentation of algae Spirogyra hyalina using Saccharomyces cerevisiae. Biofuels. 2017;8(3):367–372.
  • Birol G, Doruker P, Kirdar B, et al. Mathematical description of ethanol fermentation by immobilised Saccaromyces cerevisiae. Process Biochem. 1998;33(7):763–771.
  • Lei F, Rotboll M, Jorgensen SB. A biochemically structured model for Saccharomyces cerevisiae. J Biotechol. 2001;88(3):205–221.
  • Mhaskar P, Hjortsø M, Henson M. Cell population modeling and parameter estimation for continuous cultures of Saccharomyces cerevisiae. Biotechnol Prog. 2002;18:1010–1026.
  • Henson MA. Dynamic modeling and control of yeast cell populations in continuous biochemical reactors. Comput Chem Eng. 2003;27(8-9):1185–1199.
  • Walther T, Reinsch H, Grosse A, et al. Mathematical modeling of regulatory mechanisms in yeast colony development. J Theor Biol. 2004;229(3):327–338.
  • Paz Astudillo IC, Cardona Alzate CA. Importance of stability study of continuous systems for ethanol production. J Biotechnol. 2011;151(1):43–55.
  • Jia G, Stephanopoulos G, Gunawan R. Ensemble kinetic modeling of metabolic networks from dynamic metabolic profiles. Metabolites. 2012;2(4):891–921.
  • Kasbawati, Gunawan AY, Hertadi R, et al. Effects of time delay on the dynamics of a kinetic model of a microbial fermentation process. ANZIAM J. 2014;55(4):336–356.
  • Kasbawati, Gunawan AY, Hertadi R, et al. Metabolic regulation and maximal reaction optimization in the central metabolism of a yeast cell. AIP Conf Proc. 2015;1651:75–85.
  • Kasbawati, Gunawan AY, Sidarto KA. Washout and non-washout solutions of a system describing microbial fermentation process under the influence of growth inhibitions and maximal concentration of yeast cells. Math Biosci. 2017;289:40–50.
  • Monod J. The growth of bacterial cultures. Ann Rev Microbiol. 1949;3:371–394.
  • Aiba S, Shoda M, Nagatani M. Kinetics of product inhibition in alcoholic fermentation. Biotechnol Bioeng. 1968;11:846–864.
  • Ghose T, Tyagi R. Rapid ethanol fermentation of cellulose hydrolysate. II. Product and substrate inhibition and optimization of fermentor design. Biotechnol Bioeng. 1979;21:1401–1420.
  • Zarina A, Hasana MU, Shameel M. Diversity of the genus Spirogyra (Zygnemophyceae shameel) in the North-Eastern areas of Pakistan. Proc Pakistan Acad Sci. 2007;44(4):225–248.
  • Kargi F. Re-interpretation of the logistic equation for batch microbial growth in relation to Monod kinetics. Lett Appl Microbiol. 2009;48:398–401.
  • Lagarias JC. Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J Opt. 1998;9(1):112–147.
  • Kostov G, Popova S, Gochev S, et al. Modeling of batch alcohol fermentation with free and immobilized yeasts Saccharomyces cerevisiae 46 EVD. Biotechnol Biotechnol Equip. 2012;26(3):3021–3030.