917
Views
4
CrossRef citations to date
0
Altmetric
Research-Article

cDNA-AFLP analysis of transcript derived fragments during seed development in castor bean (Ricinus communis L.)

, , , , , , , & show all
Pages 1119-1125 | Received 22 Oct 2017, Accepted 27 Jul 2018, Published online: 09 Oct 2018

References

  • Zou Z, Gong J, Huang Q, et al. Gene structures, evolution, classification and expression profiles of the aquaporin gene family in castor bean (Ricinus communis L.). Plos One. 2015;10:e0141022; DOI: 10.1371/journal.pone.0141022
  • Campbell DN, Na CI, Rowland DL, et al. Development of a regional specific crop coefficient (Kc) for castor (Ricinus communis L.) in Florida, USA by using the sap flow method. Industr Crop Product. 2015;74:465–471.
  • Severino LS, Auld DL, Baldanzi M, et al. A review on the challenges for increased production of castor. Agron J. 2012;104:931–938.
  • Huang FL, Zhu GL, Chen YS, et al. Seed characteristics and fatty acid composition of castor (Ricinus communis L.) varieties in Northeast China. Phyton. 2015;84:26–33.
  • Anjani K. Castor genetic resources: a primary gene pool for exploitation. Industr Crop Product. 2012;35:1–14.
  • Huang F, Bao C, Peng M, et al. Chromatographic analysis of fatty acid composition in differently sized seeds of castor accessions. Biotechnol Biotechnol Equip. 2015;29:892–900.
  • Lin JT, Arcinasc A. Regiospecific analysis of diricinoleoylacylglycerols in castor (Ricinus communis L.) oil by electrospray ionization-mass spectrometry. J Agric Food Chem. 2007;55:2209–2216.
  • Xiao D, Liu ST, Wei YP, et al. cDNA-AFLP analysis reveals differential gene expression in incompatible interaction between infected non-heading Chinese cabbage and Hyaloperonospora parasitica. Hortic Res. 2016 [cited 2018 Jan 16];3:16034; DOI:10.1038/hortres.2016.34
  • Vuylsteke M, Peleman JD, Eijk MJV. AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis. Nat Protoc. 2007;2:1399–1413.
  • Bachem CWB, Oomen RJFJ, Visser RGF. Transcript Imaging with cDNA-AFLP: a Step-by-Step Protocol. Plant Mol Biol Rep. 1998;16:157–157.
  • Diego JGD, Rodríguez FD, Lorenzo JLR, et al. cDNA-AFLP analysis of seed germination in Arabidopsis thaliana identifies transposons and new genomic sequences. J Plant Physiol. 2006;163:452–462.
  • Botha FC, Burger AL, Venter M. Molecular analysis of fruit ripening: the identification of differentially expressed sequences in Vitis vinifera using cDNA-AFLP technology. Vitis -Geilweilerhof. 2001;40:191–196.
  • Amini S, Maali-Amiri R, Mohammadi R. cDNA-AFLP analysis of transcripts induced in chickpea plants by TiO 2 nanoparticles during cold stress. Plant Physiol Biochem. 2016;111:39–49.
  • Xu F, Peng M, Luo Q, et al. Isolation and detection of transcript-derived fragments (TDFs) in NaCl-stressed black locust (Robinia pseudoacacia L.) using cDNA-AFLP analysis. Acta Physiol Plant. 2015;37:1–8.
  • Chen X, Peng M, Huang F, et al. A quantitative assay for fatty acid composition of castor seed in different developmental stages. Mol Plant Breed. 2016;7:1–8.
  • Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res. 1995;23:4407–4414.
  • Zhou C, Guo Y, Xie L, et al. Oprimization of AFLP system for hot pepper induced by space. North Horticult. 2011;21:103–105.
  • Chen GQ, Ahn Y, He X, et al. Quantitative transcript profiling of lipid biosynthesis genes in developing castor seeds [Abstract]. National Plant Lipid Cooperative Meeting, USA; 2005. Available from: https://www.ars.usda.gov/research/publications/publication/?seqNo115=180014
  • Rantong G, Kelen KVD, Breusegem FV, et al. Identification of differentially expressed genes during lace plant leaf development. Int J Plant Sci. 2016;177:419–431.
  • Leymarie J, Corbineau F. Identification of transcripts potentially involved in barley seed germination and dormancy using cDNA-AFLP. J Exp Bot. 2007;58:425–437.
  • Davis MS, Solbiati J, Cronan JE Jr. Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem. 2000;275:28593–28598.
  • Turnham E, Northcote DH. Changes in the activity of acetyl-CoA carboxylase during rape-seed formation. Biochem J. 1983;212:223–229.
  • Charles DJ, Cherry JH. Purification and characterization of acetyl-CoA carboxylase from developing soybean seeds. Phytochemistry. 1986;25:1067–1071.
  • Simcox PD, Garland W, Deluca V, et al. Respiratory pathways and fat synthesis in the developing castor oil se. Can J Bot. 2011;57:1008–1014.
  • Patel MS, Roche TE. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 1990;4:3224–3233.
  • Sutendra G, Kinnaird A, Dromparis P, et al. A nuclear pyruvate dehydrogenase complex is important for the generation of acetyl-CoA and histone acetylation. Cell. 2014;158:84–97.
  • Randall DD. Purification and characterization of the pea chloroplast pyruvate dehydrogenase complex : a source of acetyl-CoA and NADH for fatty acid biosynthesis. Plant Physiol. 1985;77:571–577.
  • Smith RG, Gauthier DA, Dennis DT, et al. Malate- and pyruvate-dependent fatty acid synthesis in leucoplasts from developing castor endosperm. Plant Physiol. 1992;98:1233–1238.
  • Rapp BJ, Randall DD. Pyruvate dehydrogenase complex from germinating castor bean endosperm. Plant Physiol. 1980;65:314–318.
  • Parra O, Gallego AM, Urrea A, et al. Biochemical precursor effects on the fatty acid production in cell suspension cultures of Theobroma cocao L. Plant Physiol Biochem. 2017;111:59–66.
  • Ke J, Behal RH, Back SL, et al. The role of pyruvate dehydrogenase and acetyl-coenzyme A synthetase in fatty acid synthesis in developing Arabidopsis seeds. Plant Physiol. 2000;123:497–508.
  • Yao L, Hui S, Nan W, et al. Elevated acetyl-CoA by amino acid recycling fuels microalgal neutral lipid accumulation in exponential growth phase for biofuel production. Plant Biotechnol J. 2017;15:497–509.