934
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Individual capacity for repair of DNA damage and potential uses of stem cell lines for clinical applications: a matter of (genomic) integrity

, ORCID Icon, & ORCID Icon
Pages 1352-1358 | Received 19 Jun 2018, Accepted 04 Sep 2018, Published online: 15 Oct 2018

References

  • Yalçin B, Kremer LC, van Dalen EC. High-dose chemotherapy and autologous haematopoietic stem cell rescue for children with high-risk neuroblastoma. Cochrane Database Syst Rev. 2015;(10):CD006301. DOI: 10.1002/14651858.CD006301.pub3
  • Chivu-Economescu M, Rubach M. Hematopoietic Stem Cells Therapies. Curr Stem Cell Res Ther. 2017;12(2):124–133.
  • Muraro PA, Martin R, Mancardi GL, et al. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat Rev Neurol. 2017;13(7):391–405.
  • Penati R, Fumagalli F, Calbi V, et al. Gene therapy for lysosomal storage disorders: recent advances for metachromatic leukodystrophy and mucopolysaccaridosis I. J Inherit Metab Dis. 2017;40(4):543–554.
  • Zeher M, Papp G, Nakken B, et al. Hematopoietic stem cell transplantation in autoimmune disorders: From immune-regulatory processes to clinical implications. Autoimmun Rev. 2017;16(8):817–825.
  • Holyoake TL, Alcorn MJ, Richmond L, et al. CD34 positive PBPC expanded ex vivo may not provide durable engraftment following myeloablative chemoradiotherapy regimens. Bone Marrow Transplant. 1997;19(11):1095–1101.
  • Draper JS, Smith K, Gokhale P, et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol. 2004;22:53–54.
  • Hovatta O, Jaconi M, Töhönen V, et al. A teratocarcinoma-like human embryonic stem cell (hESC) line and four hESC lines reveal potentially oncogenic genomic changes. PLoS One. 2010;5(4):e10263. DOI:10.1371/journal.pone.0010263
  • Vaxman I, Ram R, Gafter-Gvili A, et al. Secondary malignancies following high dose therapy and autologous hematopoietic cell transplantation-systematic review and meta-analysis. Bone Marrow Transplant. 2015;50(5):706–714.
  • Becker KA, Ghule PN, Therrien JA, et al. Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase. J Cell Physiol. 2006;209(3):883–893.
  • Bárta T, Vinarský V, Holubcová Z, et al. Human embryonic stem cells are capable of executing G1/S checkpoint activation. Stem Cells. 2010;28(7):1143–1145.
  • Arabadjiev A, Petkova R, Momchilova A, et al. Of mice and men – differential mechanisms of maintaining the undifferentiated state in mESC and hESC. BioDiscovery. 2012;3:e8927. DOI:10.7750/BioDiscovery.2012.3.1
  • Laugesen A, Helin K. Chromatin repressive complexes in stem cells, development, and cancer. Cell Stem Cell. 2014; 14(6):735–751.
  • Nagaria P, Robert C, Rassool FV. DNA double-strand break response in stem cells: mechanisms to maintain genomic integrity. Biochim Biophys Acta. 2013;1830(2):2345–2353.
  • Zhao B, Zhang WD, Duan YL, et al. Filia is an ESC-specific regulator of DNA damage response and safeguards genomic stability. Cell Stem Cell. 2015;16(6):684–698.
  • Pero RW, Bryngelsson C, Mitelman F, et al. Interindividual variation in the responses of cultured human lymphocytes to exposure from DNA damaging chemical agents: interindividual variation to carcinogen exposure. Mutat Res. 1978;53(3):327–341.
  • Chakarov S, Petkova R, Russev GCh. Individual capacity for detoxification of genotoxic compounds and repair of DNA damage. Commonly used methods for assessment of capacity for DNA repair. BioDiscovery. 2014;11:e8958. DOI:10.7750/BioDiscovery.2014.11.2
  • Vodicka P, Kumar R, Stetina R, et al. Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis. 2004;25(5):757–763.
  • Shkarupa VM, Mishcheniuk OY. Polymorphism of DNA repair gene XPD Lys751Gln and chromosome aberrations in lymphocytes of thyroid cancer patients exposed to ionizing radiation due to the Chornobyl accident. Exp Oncol. 2016;38(4):257–260.
  • Jacobsohn DA, Vogelsang GB. Acute graft versus host disease. Orphanet J Rare Dis. 2007;2:35. DOI: 10.1186/1750-1172-2
  • Valcárcel D, Martino R, Caballero D, et al. Sustained remissions of high-risk acute myeloid leukemia and myelodysplastic syndrome after reduced-intensity conditioning allogeneic hematopoietic transplantation: chronic graft-versus-host disease is the strongest factor improving survival. J Clin Oncol. 2008;26(4):577–584.
  • Arora M, Lindgren B, Basu S, et al. Polymorphisms in the base excision repair pathway and graft-versus-host disease. Leukemia. 2010;24:1470–1475.
  • Kornblit B, Masmas T, Petersen SL, et al. Association of HMGB1 polymorphisms with outcome after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2010;16:239–252.
  • Thyagarajan B, Lindgren B, Basu S, et al. Association between genetic variants in the base excision repair pathway and outcomes after hematopoietic cell transplantations. Biol Blood Marrow Transplant. 2010;16:1084–1089.
  • Diamond HR, Ornellas MH, Orfao A, et al. Acute myeloid leukemia of donor origin after allogeneic stem cell transplantation from a sibling who harbors germline XPD and XRCC3 homozygous polymorphisms. J Hematol Oncol. 2011;4:39. DOI:10.1186/1756-8722-4-39
  • Nijnik A, Woodbine L, Marchetti C, et al. ANA DNA repair is limiting for haematopoietic stem cells during ageing. Nature. 2007;447(7145):686–690.
  • Niedernhofer LJ. DNA repair is crucial for maintaining hematopoietic stem cell function. DNA Repair (Amst). 2008;7(3):523–529.
  • Desai A, Qing Y, Gerson SL. Exonuclease 1 is a critical mediator of survival during DNA double strand break repair in nonquiescent hematopoietic stem and progenitor cells. Stem Cells. 2014;32(2):582–593.
  • Abdallah BM, Kassem M. Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther. 2008;15(2):109–116.
  • Perin L, Sedrakyan S, Da Sacco S, et al. Characterization of human amniotic fluid stem cells and their pluripotential capability. Methods Cell Biol. 2008;86:85–99.
  • Nicolay NH, Rühle A, Perez RL, et al. Mesenchymal stem cells exhibit resistance to topoisomerase inhibition. Cancer Lett. 2016;374(1):75–84.
  • Hare I, Gencheva M, Evans R, et al. In vitro expansion of bone marrow derived mesenchymal stem cells alters DNA double strand break repair of etoposide induced DNA damage. Stem Cells Int. 2016;2016:8270464. DOI:10.1155/2016/8270464
  • Pal R, Venkataramana NK, Bansal A, et al. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy. 2009;11(7):897–911.
  • Lee JS, Hong JM, Moon GJ, et al. A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28(6):1099–1106.
  • Kobold S, Guhr A, Kurtz A, et al. Human embryonic and induced pluripotent stem cell research trends: complementation and diversification of the field. Stem Cell Rep. 2015;4(5):914–925.
  • Chin MH, Mason MJ, Xie W, et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell. 2009;5(1):111–123.
  • Feng Q, Lu SJ, Klimanskaya I, et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells. 2010;28(4):704–712.
  • Ghosh Z, Wilson KD, Wu Y, Hu S, et al. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS One. 2010;5(2):e8975. DOI:10.1371/journal.pone.0008975
  • Doi D, Samata B, Katsukawa M, et al. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep. 2014;2(3):337–350.
  • Schwartz SD, Regillo CD, Lam BL, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385(9967):509–516.
  • Menasché P, Vanneaux V, Fabreguettes JR, et al. Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: a translational experience. Eur Heart J. 2015;36(12):743–750.
  • Yabe SG, Fukuda S, Takeda F, et al. Efficient generation of functional pancreatic β-cells from human induced pluripotent stem cells. J Diabetes. 2017;9(2):168–179.
  • Tilgner K, Neganova I, Moreno-Gimeno I, et al. A human iPSC model of Ligase IV deficiency reveals an important role for NHEJ-mediated-DSB repair in the survival and genomic stability of induced pluripotent stem cells and emerging haematopoietic progenitors. Cell Death Differ. 2013;20(8):1089–1100.
  • Masotti A, Celluzzi A, Petrini S, et al. Aged iPSCs display an uncommon mitochondrial appearance and fail to undergo in vitro neurogenesis. Aging (Albany NY). 2014;6(12):1094–1108.
  • Simara P, Tesarova L, Rehakova D, et al. DNA double-strand breaks in human induced pluripotent stem cell reprogramming and long-term in vitro culturing. Stem Cell Res Ther. 2017;8:73. DOI:10.1186/s13287-017-0522-5
  • Nagaria PK, Robert C, Park TS, et al. High-fidelity reprogrammed human IPSCs have a high efficacy of DNA repair and resemble hESCs in their MYC transcriptional signature. Stem Cells Int. 2016;2016:3826249. DOI:10.1155/2016/3826249
  • Garber K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol. 2015;33(9):890–891.
  • Takashima K, Inoue Y, Tashiro S, et al. Lessons for reviewing clinical trials using induced pluripotent stem cells: examining the case of a first-in-human trial for age-related macular degeneration. Regen Med. 2018;13(2):123–128.
  • Gazdic M, Volarevic V, Harrell CR, et al. Stem cells therapy for spinal cord injury. Int J Mol Sci. 2018;19(4):1039. DOI: 10.3390/ijms19041039
  • Takahashi J. Stem cells and regenerative medicine for neural repair. Curr Opin Biotechnol. 2018;52:102–108.
  • Serrano L, Liang L, Chang Y, et al. Homologous recombination conserves DNA sequence integrity throughout the cell cycle in embryonic stem cells. Stem Cells Dev. 2011;20(2):363–374.
  • Cattoglio C, Zhang ET, Grubisic I, et al. Functional and mechanistic studies of XPC DNA-repair complex as transcriptional coactivator in embryonic stem cells. Proc Natl Acad Sci USA. 2015;112(18):E2317–2326.
  • Ho JJ, Cattoglio C, McSwiggen DT, et al. Regulation of DNA demethylation by the XPC DNA repair complex in somatic and pluripotent stem cells. Genes Dev. 2017;31(8):830–844.
  • Al-Khalaf MH, Blake LE, Larsen BD, et al. Temporal activation of XRCC1-mediated DNA repair is essential for muscle differentiation. Cell Discov. 2016;2:15041. DOI:10.1038/celldisc.2015.41
  • Cyranoski D. Trials of embryonic stem cells to launch in China. Nature. 2017;546(7656):15–16.
  • Hanson C, Caisander G. Human embryonic stem cells and chromosome stability. APMIS. 2005;113(11-12):751–755.
  • Reynolds L. The success of stem cell transplantations and the potential post-transplantation complications may be dependent, among other factors, on the capacity of the recipient and the transplanted cells to repair DNA damage. BioDiscovery. 2016;19:e9076. DOI:10.3897/BioDiscovery.19.e9076