1,014
Views
12
CrossRef citations to date
0
Altmetric
ARTICLE

A new Na+/H+ antiporter gene KvNHX1 isolated from the halophyte Kosteletzkya virginica improves salt tolerance in transgenic tobacco

, &
Pages 1378-1386 | Received 04 Jan 2018, Accepted 10 Sep 2018, Published online: 11 Oct 2018

References

  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–681.
  • Fahad S, Hussain S, Matloob A, et al. Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul. 2015;75:391–404.
  • Chen P, Yan K, Shao H, et al. Physiological mechanisms for high salt tolerance in wild soybean (Glycine soja) from Yellow River Delta, China: photosynthesis, osmotic regulation, ion flux and antioxidant capacity. PLoS One. 2013;8:e83227. DOI: 10.1371/journal.pone.0083227
  • Wu XH, Zhang HS, Li G, et al. Ameliorative effect of castor bean (Ricinus communis L.) planting on physico-chemical and biological properties of seashore saline soil. Ecol Eng. 2012;38:97–100.
  • Li Z, Li G, Qin P. The prediction of ecological potential for developing salt-tolerant oil plants on coastal saline land in Sheyang Saltern, China. Ecol Eng. 2010;36:27–35.
  • Shabala S, Cuin TA. Potassium transport and plant salt tolerance. Physiol Plant. 2008;133(4):651–669.
  • Zhu JK. Plant salt tolerance. Trends Plant Sci. 2001;6:66–71.
  • Niu X, Bressan RA, Hasegawa PM, et al. Ion homeostasis in NaCl stress environments. Plant Physiol. 1995;109:735–742.
  • Blumwald E, Aharon GS, Apse MP. Sodium transport in plant cells. Biochim Biophys Acta. 2000;1465:140–151.
  • Hasegawa PM, Bressan RA, Zhu JK, et al. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol. 2000;51:463–499.
  • Apse MP, Aharon GS, Snedden WA, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science. 1999;285:1256–1258.
  • Shi H, Lee BHWu SJ, Zhu JK. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol. 2003;21:81–85.
  • Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na+/H + exchanger gene in Oryza sativa. Biochim Biophys Acta. 1999;1446:149–155.
  • Wu CA, Yang GD, Meng QW, et al. The cotton GhNHX1 gene encoding a novel putative tonoplast Na(+)/H(+) antiporter plays an important role in salt stress. Plant Cell Physiol. 2004; 45:600–607.
  • Zörb C, Noll A, Karl S, et al. Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress. J Plant Physiol. 2005;162:55–66.
  • Cao D, Hou W, Liu W, et al. Overexpression of TaNHX2 enhances salt tolerance of ‘composite’ and whole transgenic soybean plants. Plant Cell Tiss Org. 2011;107(3):541–552.
  • Wang J, Zuo K, Wu W, et al. Molecular cloning and characterization of a new Na+/H+ antiporter gene from Brassica napus. DNA Seq. 2003;14:351–358.
  • Zhang H, Liu Y, Xu Y, et al. A newly isolated Na+/H+ antiporter gene, DmNHX1, confers salt tolerance when expressed transiently in Nicotiana benthamiana or stably in Arabidopsis thaliana. Plant Cell Tiss Org. 2012;110:189–200.
  • Khan MS, Ahmad D, Khan MA. Trends in genetic engineering of plants with (Na+/H+) antiporters for salt stress tolerance. Biotechnol Biotechnol Equip. 2015;29:815–825.
  • Brini F, Hanin M, Mezghani I, et al. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot. 2007;58:301–308.
  • Li J, Jiang G, Huang P, et al. Overexpression of the Na+/H+ antiporter gene from Suaeda salsa confers cold and salt tolerance to transgenic Arabidopsis thaliana. Plant Cell Tiss Org. 2007;90:41–48.
  • Bao-Yan AN, Luo Y, Jia-Rui LI, et al. Expression of a vacuolar Na+/H+ antiporter gene of Alfalfa enhances salinity tolerance in transgenic Arabidopsis. Acta Agron Sinica. 2008;34:557–564.
  • Wang J, Zuo K, Wu W, J, et al. Expression of a novel antiporter gene from Brassica napus resulted in enhanced salt tolerance in transgenic tobacco plants. Biol Plantarum. 2004;48:509–515.
  • Ohta M, Hayashi Y, Nakashima A, et al. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett. 2002;532:279–282.
  • Xue ZY, Zhi DY, Xue GP, et al. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci. 2004;167:849–859.
  • Yin XY, Yang AF, Zhang KW, et al. Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHX1 gene. Exp Cell Res. 2004;46:321–326.
  • Mishra A, Tanna B. Halophytes: potential resources for salt stress tolerance genes and promoters. Front Plant Sci. 2017;8:829. DOI:10.3389/fpls.2017.00829
  • Zhao FY, Zhang XJ, Li PH, et al. Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol Breeding. 2006;17:341–353.
  • Lan T, Duan Y, Wang B, et al. Molecular cloning and functional characterization of a Na+/H+ antiporter gene from halophyte Spartina anglica. Turk J Agric For. 2014;35:535–543.
  • Zhou GS, Xia YR, Ma BL, et al. Culture of seashore mallow under different salinity levels using plastic nutrient-rich matrices and transplantation. Agron J. 2010;102:395–402.
  • Tang X, Wang H, Shao C, et al. Global gene expression of Kosteletzkya virginica seedlings responding to salt stress. PLoS One. 2015;10:e0124421. DOI:10.1371/journal.pone.0124421
  • Tang X, Wang H, Chu L, et al. KvLEA, a new isolated late embryogenesis abundant protein gene from Kosteletzkya virginica responding to multiabiotic stresses. BioMed Res Int. 2016;2016:9823697. DOI: 10.1155/2016/9823697
  • Tang X, Wang H, Shao C, et al. Reference gene selection for qPCR normalization of Kosteletzkya virginica under salt stress. Biomed Res Int. 2015;2015:823806. DOI: 10.1155/2015/823806
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408.
  • Chen H, Nelson RS, Sherwood JL. Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. Biotechniques. 1994;16:664–668, 670.
  • Burow MD, Chlan CA, Sen P, et al. High-frequency generation of transgenic tobacco plants after modified leaf disk cocultivation with Agrobacterium tumefaciens. Plant Mol Biol Rep. 1990;8:124–139.
  • Wang H, Tang X, Wang H, et al. Physiological responses of Kosteletzkya virginica to coastal wetland soil. Sci World J. 2015;2015:354581. DOI: 10.1155/2015/354581
  • Yu B, Luo Q, Liu Y. Effects of salt stress on growth and ionic distribution of salt-born Glycine soja. Acta Agron Sinica. 2001;27:203–210.
  • Liang M, Lin M, Lin Z, et al. Identification, functional characterization, and expression pattern of a NaCl-inducible vacuolar Na+/H+ antiporter in chicory (Cichorium intybus L.). Plant Growth Regul. 2015;75:605–614.
  • Wu C, Gao X, Kong X, et al. Molecular cloning and functional analysis of a Na+/H+ antiporter gene ThNHX1 from a halophytic plant Thellungiella halophila. Plant Mol Biol Rep. 2009;27:1–12.
  • Yokoi S, Quintero FJ, Cubero B, et al. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J Cell Mol Biol. 2010;30:529–539.
  • Zhang LQ, Niu YD, Huridu H, et al. Salicornia europaea L. Na+/H+ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.). Genet Mol Res. 2014;13:5350–5360.
  • Wang B, Zhai H, He S, et al. A vacuolar Na+/H+ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Sci Hortic. 2016;201:153–166.
  • Li N, Wang X, Ma B, et al. Expression of a Na+/H+ antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana. J Plant Physiol. 2017;218:109–120.
  • Li W, Zhang Q, Kong X, et al. Salt tolerance is conferred in Arabidopsis by overexpression of the vacuolar Na+/H+ antiporter gene SsNHX2, an alternative splicing variant of SsNHX1, from Suaeda salsa. J Plant Biol. 2009;52:147–153.
  • Guan B, Hu Y, Zeng Y, et al. Molecular characterization and functional analysis of a vacuolar Na+/H+ antiporter gene (HcNHX1) from Halostachys caspica. Mol Biol Rep. 2011;38:1889–1899.